Abstract

Ultrahigh resolution optical coherence tomography (OCT) is demonstrated at 800 nm and 1300 nm using continuum generation in a single photonic crystal fiber with a parabolic dispersion profile and two closely spaced zero dispersion wavelengths. Both wavelengths are generated simultaneously by pumping the fiber with ~78 mW average power at 1064 nm in a 52 MHz, 85 fs pulse train from a compact Nd:Glass oscillator. Continuum processes result in a double peak spectrum with > 110 nm and 30 mW average power at 800 nm and > 150 nm and 48 mW at 1300 nm. OCT imaging with < 5 μm resolution in tissue at 1300 nm and < 3 μm resolution at 800 nm is demonstrated. Numerical modeling of propagation was used to predict the spectrum and can be used for further optimization to generate smooth, broad spectra for OCT applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat Biotechnol 21, 1361–1367 (2003).
    [CrossRef] [PubMed]
  3. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
    [CrossRef]
  5. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
    [CrossRef] [PubMed]
  6. A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, “Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser,” Optics Letters 27, 2037–2039 (2002).
    [CrossRef]
  7. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
    [CrossRef] [PubMed]
  8. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters 27, 2010–2012 (2002).
    [CrossRef]
  9. P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
    [CrossRef] [PubMed]
  10. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Optics Letters 27, 530–532 (2002).
    [CrossRef]
  11. A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
    [PubMed]
  12. C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).
  13. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
    [CrossRef] [PubMed]
  14. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Physics in Medicine and Biology 39, 1705–1720 (1994).
    [CrossRef] [PubMed]
  15. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
    [CrossRef] [PubMed]
  16. P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
    [CrossRef] [PubMed]
  17. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters 25, 25–27 (2000).
    [CrossRef]
  18. I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
    [CrossRef]
  19. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
    [CrossRef]
  20. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” Journal of Biomedical Optics 9, 47–74 (2004).
    [CrossRef] [PubMed]
  21. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
    [CrossRef] [PubMed]
  22. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
    [CrossRef] [PubMed]
  23. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
    [CrossRef] [PubMed]
  24. H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
    [CrossRef] [PubMed]
  25. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
    [CrossRef] [PubMed]
  26. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
    [CrossRef]
  27. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J Opt Soc Am B 20, 2410–2417 (2003).
    [CrossRef]
  28. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
    [CrossRef] [PubMed]
  29. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Optics Letters 28, 944–946 (2003).
    [CrossRef] [PubMed]
  30. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
    [CrossRef]
  31. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
    [CrossRef] [PubMed]
  32. P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
    [CrossRef] [PubMed]
  33. K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
    [CrossRef] [PubMed]
  34. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J Opt Soc Am B 21, 1969–1980 (2004).
    [CrossRef]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2001).
  36. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Physical Review Letters 8720, art. no.-203901 (2001).
  37. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Optics Letters 27, 924–926 (2002).
    [CrossRef]
  38. B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Optics Express 10, 575–580 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69331.
    [PubMed]
  39. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
    [PubMed]
  40. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
    [CrossRef]
  41. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J Opt Soc Am B 19, 2171–2182 (2002).
    [CrossRef]
  42. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Optics Express 13, 6181–6192 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85282.
    [CrossRef] [PubMed]
  43. S. R. Chinn and E. A. Swanson, “Blindness Limitations in Optical Coherence Domain Reflectometry,” Electronics Letters 29, 2025–2027 (1993).
    [CrossRef]
  44. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Optics Express 13, 7535–7540 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85486.
    [CrossRef] [PubMed]
  45. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Optics Express 12, 317–324 (2004), http://www.opticsinfobase.org/abstract.cfm?id=78593.
    [CrossRef] [PubMed]
  46. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by highspeed spectral optical coherence tomography,” Optics Letters 28, 1745–1747 (2003).
    [CrossRef] [PubMed]
  47. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
    [CrossRef] [PubMed]
  48. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
    [CrossRef] [PubMed]
  49. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
    [CrossRef] [PubMed]

2005 (3)

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Optics Express 13, 6181–6192 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85282.
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Optics Express 13, 7535–7540 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85486.
[CrossRef] [PubMed]

2004 (12)

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Optics Express 12, 317–324 (2004), http://www.opticsinfobase.org/abstract.cfm?id=78593.
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J Opt Soc Am B 21, 1969–1980 (2004).
[CrossRef]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” Journal of Biomedical Optics 9, 47–74 (2004).
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
[CrossRef]

P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
[CrossRef] [PubMed]

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

2003 (12)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat Biotechnol 21, 1361–1367 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J Opt Soc Am B 20, 2410–2417 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Optics Letters 28, 944–946 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by highspeed spectral optical coherence tomography,” Optics Letters 28, 1745–1747 (2003).
[CrossRef] [PubMed]

2002 (11)

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Optics Letters 27, 924–926 (2002).
[CrossRef]

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Optics Express 10, 575–580 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69331.
[PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
[PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J Opt Soc Am B 19, 2171–2182 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters 27, 2010–2012 (2002).
[CrossRef]

A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, “Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser,” Optics Letters 27, 2037–2039 (2002).
[CrossRef]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Optics Letters 27, 530–532 (2002).
[CrossRef]

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

2001 (3)

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Physical Review Letters 8720, art. no.-203901 (2001).

2000 (1)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters 25, 25–27 (2000).
[CrossRef]

1999 (1)

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

1996 (1)

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
[CrossRef] [PubMed]

1995 (1)

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

1994 (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Physics in Medicine and Biology 39, 1705–1720 (1994).
[CrossRef] [PubMed]

1993 (1)

S. R. Chinn and E. A. Swanson, “Blindness Limitations in Optical Coherence Domain Reflectometry,” Electronics Letters 29, 2025–2027 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2001).

Aguirre, A. D.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

Ahnelt, P. K.

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Andersen, T. V.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Anger, E. M.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Apolonski, A.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

Bajraszewski, T.

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by highspeed spectral optical coherence tomography,” Optics Letters 28, 1745–1747 (2003).
[CrossRef] [PubMed]

Bang, O.

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Optics Express 13, 7535–7540 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85486.
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Optics Express 13, 6181–6192 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85282.
[CrossRef] [PubMed]

Bilinsky, I. P.

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
[CrossRef] [PubMed]

Birks, T. A.

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

Bizheva, K.

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

Boccara, A. C.

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Optics Letters 27, 530–532 (2002).
[CrossRef]

Boppart, S. A.

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters 27, 2010–2012 (2002).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Bouma, B.

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Bouma, B. E.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
[CrossRef] [PubMed]

Bourquin, S.

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

Brezinski, M. E.

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Broeng, J.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
[PubMed]

Bunting, U.

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

Cense, B.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chau, A. H. L.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

Chen, T. C.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

Chen, Y.

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
[CrossRef]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Chen, Z.

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
[CrossRef] [PubMed]

Chinn, S. R.

S. R. Chinn and E. A. Swanson, “Blindness Limitations in Optical Coherence Domain Reflectometry,” Electronics Letters 29, 2025–2027 (1993).
[CrossRef]

Chuck, R. S.

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

Chudoba, C.

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Optics Letters 28, 944–946 (2003).
[CrossRef] [PubMed]

Cowey, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

de Boer, J. F.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

de Matos, C. J. S.

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

Drexler, W.

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” Journal of Biomedical Optics 9, 47–74 (2004).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

Dubois, A.

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Optics Letters 27, 530–532 (2002).
[CrossRef]

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

Duker, J. S.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

Eason, R. W.

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

Eckhaus, M. A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Physics in Medicine and Biology 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Falk, P.

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Optics Express 13, 7535–7540 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85486.
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Optics Express 13, 6181–6192 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85282.
[CrossRef] [PubMed]

Fercher, A. F.

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Frosz, M. H.

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Optics Express 13, 6181–6192 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85282.
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Optics Express 13, 7535–7540 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85486.
[CrossRef] [PubMed]

Fujimoto, J. C.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Fujimoto, J. G.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
[CrossRef]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat Biotechnol 21, 1361–1367 (2003).
[CrossRef] [PubMed]

A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, “Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser,” Optics Letters 27, 2037–2039 (2002).
[CrossRef]

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
[CrossRef] [PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gaeta, A. L.

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Optics Letters 27, 924–926 (2002).
[CrossRef]

Gapontsev, V. P.

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

Genty, G.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
[PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

Golubovic, B.

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
[CrossRef] [PubMed]

Goodnow, J.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Goto, T.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J Opt Soc Am B 21, 1969–1980 (2004).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Optics Express 12, 317–324 (2004), http://www.opticsinfobase.org/abstract.cfm?id=78593.
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J Opt Soc Am B 20, 2410–2417 (2003).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grivas, C.

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

Hansen, K. P.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Hartl, I.

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

Harvey, J. D.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

Hee, M. R.

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J Opt Soc Am B 19, 2171–2182 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Physical Review Letters 8720, art. no.-203901 (2001).

Herz, P. R.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Hganta, R. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

Hilligsoe, K. M.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Hoelzenbein, T.

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

Holzwarth, R.

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

Hori, T.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J Opt Soc Am B 21, 1969–1980 (2004).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Optics Express 12, 317–324 (2004), http://www.opticsinfobase.org/abstract.cfm?id=78593.
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J Opt Soc Am B 20, 2410–2417 (2003).
[CrossRef]

Hsiung, P.

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
[CrossRef]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

Hsiung, P. L.

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, Y. C.

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J Opt Soc Am B 19, 2171–2182 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Physical Review Letters 8720, art. no.-203901 (2001).

Ippen, E. P.

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

Jelinek, M.

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

Jiang, Y.

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

Jung, G.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Kaertner, F. X.

P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
[CrossRef] [PubMed]

Kaivola, M.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
[PubMed]

Kartner, F. X.

A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, “Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser,” Optics Letters 27, 2037–2039 (2002).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

Keiding, S.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Knight, J. C.

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

Knuttel, A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Physics in Medicine and Biology 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Ko, T.

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

Ko, T. H.

P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
[CrossRef] [PubMed]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

Kopf, D.

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

Körtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

Koski, A.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by highspeed spectral optical coherence tomography,” Optics Letters 28, 1745–1747 (2003).
[CrossRef] [PubMed]

Kowalevicz, A. M.

A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, “Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser,” Optics Letters 27, 2037–2039 (2002).
[CrossRef]

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

Kristiansen, Y.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Larsen, J. J.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Le, T.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Lehtonen, M.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
[PubMed]

Leonhardt, R.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

Li, X. D.

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

Lim, H.

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ludvigsen, H.

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
[PubMed]

Mamedov, D.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

Marks, D. L.

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters 27, 2010–2012 (2002).
[CrossRef]

Mashimo, H.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

May-Smith, T. C.

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

Mei, M.

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

Molmer, K.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Morgan, J. E.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Morgner, U.

P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

Nassif, N.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

Nelson, J. S.

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Optics Letters 28, 944–946 (2003).
[CrossRef] [PubMed]

Nielsen, C. K.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Nishizawa, N.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J Opt Soc Am B 21, 1969–1980 (2004).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Optics Express 12, 317–324 (2004), http://www.opticsinfobase.org/abstract.cfm?id=78593.
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J Opt Soc Am B 20, 2410–2417 (2003).
[CrossRef]

Oldenburg, A. L.

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters 27, 2010–2012 (2002).
[CrossRef]

Park, B. H.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

Paulsen, H. N.

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

Pehamherger, H.

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

Petersen, C.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Pitris, C.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

Pollnau, M.

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

Popov, S. V.

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

Povazay, B.

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

Prokhorov, V.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ralph, S. E.

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Optics Express 10, 575–580 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69331.
[PubMed]

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters 25, 25–27 (2000).
[CrossRef]

Reiser, B. J.

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

Reynolds, J. J.

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters 27, 2010–2012 (2002).
[CrossRef]

Russel, P. S.

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

Russell, P. S.

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

Russell, P. S. J.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

Salathe, R. P.

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

Sattmann, H.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

Scherzer, E.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

Schibli, T. R.

A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, “Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser,” Optics Letters 27, 2037–2039 (2002).
[CrossRef]

Schmitt, J.

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Physics in Medicine and Biology 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Schubert, C.

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shepherd, D. P.

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

Shidlovski, V.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

Srinivasan, V. J.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

Stentz, A. J.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters 25, 25–27 (2000).
[CrossRef]

Stingl, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stur, M.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn and E. A. Swanson, “Blindness Limitations in Optical Coherence Domain Reflectometry,” Electronics Letters 29, 2025–2027 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takayanagi, J.

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Optics Express 12, 317–324 (2004), http://www.opticsinfobase.org/abstract.cfm?id=78593.
[CrossRef] [PubMed]

Targowski, P.

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by highspeed spectral optical coherence tomography,” Optics Letters 28, 1745–1747 (2003).
[CrossRef] [PubMed]

Taylor, J. R.

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

Tearney, G. J.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
[CrossRef] [PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Tempea, G.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Unterhuber, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

Vabre, L.

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Optics Letters 27, 530–532 (2002).
[CrossRef]

Vetterlein, M.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

Wacheck, V.

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

Wagenblast, P. C.

P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
[CrossRef] [PubMed]

Wang, Y.

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
[CrossRef] [PubMed]

Washburn, B. R.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Optics Letters 28, 944–946 (2003).
[CrossRef] [PubMed]

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Optics Express 10, 575–580 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69331.
[PubMed]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Optics Letters 28, 944–946 (2003).
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
[CrossRef] [PubMed]

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Optics Express 10, 575–580 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69331.
[PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters 25, 25–27 (2000).
[CrossRef]

Wise, F. W.

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by highspeed spectral optical coherence tomography,” Optics Letters 28, 1745–1747 (2003).
[CrossRef] [PubMed]

Yadlowsky, M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Physics in Medicine and Biology 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Yakovlev, V.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

Yakubovich, S.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

Yoshida, M.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J Opt Soc Am B 21, 1969–1980 (2004).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J Opt Soc Am B 20, 2410–2417 (2003).
[CrossRef]

Yun, S. H.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

Zhao, Y.

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
[CrossRef] [PubMed]

Appl Phys a-Mater (1)

C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason, M. Pollnau, and M. Jelinek, “Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti : sapphire waveguides,” Appl Phys a-Mater 79, 1195–1198 (2004).

Electronics Letters (1)

S. R. Chinn and E. A. Swanson, “Blindness Limitations in Optical Coherence Domain Reflectometry,” Electronics Letters 29, 2025–2027 (1993).
[CrossRef]

J Opt Soc Am B (5)

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J Opt Soc Am B 19, 753–764 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J Opt Soc Am B 19, 2171–2182 (2002).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J Opt Soc Am B 20, 2410–2417 (2003).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J Opt Soc Am B 19, 2165–2170 (2002).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J Opt Soc Am B 21, 1969–1980 (2004).
[CrossRef]

Journal of Biomedical Optics (1)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” Journal of Biomedical Optics 9, 47–74 (2004).
[CrossRef] [PubMed]

Nat Biotechnol (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat Biotechnol 21, 1361–1367 (2003).
[CrossRef] [PubMed]

Nat Med (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Körtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat Med 7, 502–507 (2001).
[CrossRef] [PubMed]

Opt Lett (2)

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt Lett 30, 1171–1173 (2005).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt Lett 29, 480–482 (2004).
[CrossRef] [PubMed]

Optics Express (16)

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Optics Express 11, 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express 12, 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80147.
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Optics Express 13, 6181–6192 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85282.
[CrossRef] [PubMed]

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Optics Express 10, 575–580 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69331.
[PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express 10, 1083–1098 (2002), http://www.opticsinfobase.org/abstract.cfm?id=70205.
[PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Optics Express 13, 7535–7540 (2005), http://www.opticsinfobase.org/abstract.cfm?id=85486.
[CrossRef] [PubMed]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Optics Express 12, 317–324 (2004), http://www.opticsinfobase.org/abstract.cfm?id=78593.
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express 11, 1411–1417 (2003), http://www.opticsinfobase.org/abstract.cfm?id=72649.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Optics Express 11, 1980–1986 (2003), http://www.opticsinfobase.org/abstract.cfm?id=74008.
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber,” Optics Express 11, 3290–3297 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78091.
[CrossRef] [PubMed]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Optics Express 12, 5287–5295 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81626.
[CrossRef] [PubMed]

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, Y. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express 12, 1045–1054 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79252.
[CrossRef] [PubMed]

P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser,” Optics Express 12, 3257–3263 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80534.
[CrossRef] [PubMed]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Optics Express 12, 2112–2119 (2004), http://www.opticsinfobase.org/abstract.cfm?id=79925.
[CrossRef] [PubMed]

A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Optics Express 10, 349–353 (2002), http://www.opticsinfobase.org/abstract.cfm?id=68496.
[PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, J. C. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Optics Express 12 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80642.
[CrossRef] [PubMed]

Optics Letters (15)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters 25, 25–27 (2000).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Hganta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608–610 (2001).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800–1802 (2002).
[CrossRef]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Optics Letters 27, 530–532 (2002).
[CrossRef]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Optics Letters 20, 1486–1488 (1995).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221–1223 (1999).
[CrossRef]

A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, “Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser,” Optics Letters 27, 2037–2039 (2002).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics letters 28, 905–907 (2003).
[CrossRef] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters 27, 2010–2012 (2002).
[CrossRef]

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamherger, “Compact, broad-bandwidth fiber laser for sub-2- mu m axial resolution optical coherence tomography in. The 1300-nm wavelength region,” Optics Letters 28, 707–709 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Optics Letters 28, 944–946 (2003).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839–1841 (1996).
[CrossRef] [PubMed]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182–184 (2003).
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mu m,” Optics Letters 29, 2846–2848 (2004).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by highspeed spectral optical coherence tomography,” Optics Letters 28, 1745–1747 (2003).
[CrossRef] [PubMed]

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Optics Letters 27, 924–926 (2002).
[CrossRef]

Physical Review Letters (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Physical Review Letters 90, 113904/1–4 (2003).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Physical Review Letters 8720, art. no.-203901 (2001).

Physics in Medicine and Biology (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Physics in Medicine and Biology 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Simulated fiber length dependence of the continuum spectrum generated by 85 fs, 18 kW peak power pulses at 1060 nm. Nearly complete depletion of the pump wavelength is observed along with creation of two high brightness main peaks centered near 800 nm and 1300 nm.

Fig. 2.
Fig. 2.

Simulated pump wavelength dependence for optimal continuum generation. Input pulses of 85 fs, 18 kW peak power illustrate differences in continuum as a function of pump wavelength.

Fig. 3.
Fig. 3.

Time-frequency characteristics of the continuum for input pump pulse center wavelength of 1120 nm. The temporal profile (a) and spectrogram (b) illustrate how temporal overlap of spectral components can lead to temporal and spectral structure by cross-phase modulation.

Fig. 4.
Fig. 4.

Experimental setup for the continuum generation light source at 800 nm and 1300 nm for ultrahigh resolution OCT imaging. Spectral filtering is performed using broadband dielectric mirrors and a silicon absorber to ensure removal of the opposite wavelength for OCT imaging. TM, turning mirror; DM, dielectric mirror.

Fig. 5.
Fig. 5.

Experimental measurement of continuum spectrum on (a) linear and (b) log scales. The pump laser spectrum is also shown in (a). These spectra are created from concatenation of individually measured spectra in the 800 nm and 1300 nm wavelength regions.

Fig. 6.
Fig. 6.

Experimental measurement of RF noise spectra for the filtered wavelength regions around (a) 800 nm and (b) 1300 nm. The noise spectra are compared to the RF spectrum for the Nd:Glass oscillator alone.

Fig. 7.
Fig. 7.

OCT system diagram. Similar systems were implemented at both 800 nm and 1300 nm for these experiments. DCG, dispersion compensating glass; TIA, transimpedance amplifier; A/D, analog to digital converter.

Fig. 8.
Fig. 8.

Ultrahigh resolution OCT performance evaluation. Linear (a,b) and logarithmic (c,d) point spread functions are shown for both 800 nm (a,c) and 1300 nm (b,d). The Fourier transform of the point spread functions in (a) and (b) are shown in blue in (e) and (f) to indicate the interference bandwidth. They are overlapped with the input source spectra shown in red.

Fig. 9.
Fig. 9.

Ultrahigh resolution OCT images of formalin fixed hamster cheek pouch at (a) 800 nm and (b) 1300 nm. Enhanced image penetration is noticeable at 1300 nm and important features such as the epithelium (e), connective tissue bands (c), and muscular layers (m) can be distinguished.

Metrics