Abstract

High efficiency and high power operation of highly-doped 2 at.% crystalline Nd:YAG is demonstrated in a diode-side pumped bounce amplifier configuration. A linearly-polarized output power of 46.1W is obtained with 101W diode pumping representing the highest power achieved to date, to our knowledge, in a highly doped crystalline Nd:YAG laser. In a system operating at 19.1W output power, the slope efficiency was as high as 60%. With quasi-continuous wave diode pumping 11mJ pulses at 100Hz repetition rate were achieved and passive Q-switching with Cr4+:YAG produced pulses with 12ns duration.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser operation at 1.3μm of 2at.% doped crystalline Nd:YAG in a bounce geometry

D. Sauder, A. Minassian, and M. J. Damzen
Opt. Express 15(6) 3230-3235 (2007)

Diode-end-pumped passively Q-switched 1.33 µm Nd:Gd3AlxGa5-xO12 laser with V3+: YAG saturable absorber

Baitao Zhang, Jianfei Yang, Jingliang He, Haitao Huang, Shande Liu, Jinlong Xu, Fengqin Liu, Yuchun Zhi, and Xutang Tao
Opt. Express 18(12) 12052-12058 (2010)

Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects

O. H. Heckl, C. Kränkel, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, G. Huber, and U. Keller
Opt. Express 18(18) 19201-19208 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. A. L’Huillier, G. Bitz, V. Wesemann, P. von Loewis, R. Wallenstein, A. Borsutzky, L. Ackermann, K. Dupre, D. Rytz, and S. Vernay, “Characterization and laser performance of a new material: 2 at. % Nd:YAG grown by the Czochralski method,” Appl. Opt. 41, 4377–4384 (2002)
    [Crossref] [PubMed]
  2. P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
    [Crossref]
  3. P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
    [Crossref]
  4. Y. Urata, S. Wada, H. Tashiro, and P. Z. Deng, “Laser performance of highly neodymium-doped yttrium aluminum garnet crystals,” Opt. Lett. 26, 801–803 (2001)
    [Crossref]
  5. Y. L. Mao, P. Z. Deng, and F. X. Gan, “Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT),” Phys. Status Solidi A 193, 329–337 (2002)
    [Crossref]
  6. Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
    [Crossref]
  7. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
    [Crossref]
  8. T. Omatsu, T. Isogami, A. Minassian, and M. J. Damzen, “>100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry,” Opt. Commun. 249, 531–537 (2005)
    [Crossref]
  9. M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001)
    [Crossref]
  10. A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003)
    [Crossref]
  11. A. Minassian, B. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005)
    [Crossref]
  12. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (<100W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005)
    [Crossref]
  13. T. Omatsu, A. Minassian, and M. J. Damzen, “Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7011
    [Crossref] [PubMed]
  14. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986)
    [Crossref] [PubMed]

2005 (4)

T. Omatsu, T. Isogami, A. Minassian, and M. J. Damzen, “>100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry,” Opt. Commun. 249, 531–537 (2005)
[Crossref]

A. Minassian, B. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005)
[Crossref]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (<100W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005)
[Crossref]

T. Omatsu, A. Minassian, and M. J. Damzen, “Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7011
[Crossref] [PubMed]

2003 (1)

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003)
[Crossref]

2002 (3)

Y. L. Mao, P. Z. Deng, and F. X. Gan, “Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT),” Phys. Status Solidi A 193, 329–337 (2002)
[Crossref]

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
[Crossref]

J. A. L’Huillier, G. Bitz, V. Wesemann, P. von Loewis, R. Wallenstein, A. Borsutzky, L. Ackermann, K. Dupre, D. Rytz, and S. Vernay, “Characterization and laser performance of a new material: 2 at. % Nd:YAG grown by the Czochralski method,” Appl. Opt. 41, 4377–4384 (2002)
[Crossref] [PubMed]

2001 (2)

Y. Urata, S. Wada, H. Tashiro, and P. Z. Deng, “Laser performance of highly neodymium-doped yttrium aluminum garnet crystals,” Opt. Lett. 26, 801–803 (2001)
[Crossref]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001)
[Crossref]

2000 (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

1994 (1)

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

1992 (1)

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

1986 (1)

Ackermann, L.

Bitz, G.

Borsutzky, A.

Bruce, A.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

Crofts, G. J.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001)
[Crossref]

Damzen, M. J.

A. Minassian, B. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005)
[Crossref]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (<100W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005)
[Crossref]

T. Omatsu, T. Isogami, A. Minassian, and M. J. Damzen, “>100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry,” Opt. Commun. 249, 531–537 (2005)
[Crossref]

T. Omatsu, A. Minassian, and M. J. Damzen, “Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7011
[Crossref] [PubMed]

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003)
[Crossref]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001)
[Crossref]

Deng, P. Z.

Y. L. Mao, P. Z. Deng, and F. X. Gan, “Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT),” Phys. Status Solidi A 193, 329–337 (2002)
[Crossref]

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
[Crossref]

Y. Urata, S. Wada, H. Tashiro, and P. Z. Deng, “Laser performance of highly neodymium-doped yttrium aluminum garnet crystals,” Opt. Lett. 26, 801–803 (2001)
[Crossref]

Dupre, K.

Gan, F. X.

Y. L. Mao, P. Z. Deng, and F. X. Gan, “Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT),” Phys. Status Solidi A 193, 329–337 (2002)
[Crossref]

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
[Crossref]

Gavrilovic, P.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

Grodkiewicz, W. H.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

Guo, J. P.

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
[Crossref]

Ikesue, A.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

Isogami, T.

T. Omatsu, T. Isogami, A. Minassian, and M. J. Damzen, “>100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry,” Opt. Commun. 249, 531–537 (2005)
[Crossref]

Kurimura, S.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

L’Huillier, J. A.

Magni, V.

Mao, Y. L.

Y. L. Mao, P. Z. Deng, and F. X. Gan, “Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT),” Phys. Status Solidi A 193, 329–337 (2002)
[Crossref]

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
[Crossref]

Meehan, K.

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

Minassian, A.

A. Minassian, B. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005)
[Crossref]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (<100W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005)
[Crossref]

T. Omatsu, T. Isogami, A. Minassian, and M. J. Damzen, “>100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry,” Opt. Commun. 249, 531–537 (2005)
[Crossref]

T. Omatsu, A. Minassian, and M. J. Damzen, “Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7011
[Crossref] [PubMed]

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003)
[Crossref]

O’Neill, M. S.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

Omatsu, T.

T. Omatsu, T. Isogami, A. Minassian, and M. J. Damzen, “>100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry,” Opt. Commun. 249, 531–537 (2005)
[Crossref]

T. Omatsu, A. Minassian, and M. J. Damzen, “Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7011
[Crossref] [PubMed]

Rosas, E.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001)
[Crossref]

Rytz, D.

Sato, Y.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

Shoji, I.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

Singh, S.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

Smith, G.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (<100W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005)
[Crossref]

Taira, T.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

Tashiro, H.

Thompson, B.

A. Minassian, B. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005)
[Crossref]

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003)
[Crossref]

Thompson, B. A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (<100W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005)
[Crossref]

Trew, M.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001)
[Crossref]

Urata, Y.

Vernay, S.

von Loewis, P.

Wada, S.

Wallenstein, R.

Wesemann, V.

Williams, J. E.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

Yoshida, K.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

Zarrabi, J. H.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

Zhang, Y. H.

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003)
[Crossref]

Appl. Phys. Lett. (3)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics,” Appl. Phys. Lett. 77, 939–941 (2000)
[Crossref]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992)
[Crossref]

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz, and A. Bruce, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3μm,” Appl. Phys. Lett. 65, 1620–1622 (1994)
[Crossref]

Chin. Phys. Lett. (1)

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo, and F. X. Gan, “High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology,” Chin. Phys. Lett. 19, 1293–1295 (2002)
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (<100W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005)
[Crossref]

Opt. Commun. (3)

T. Omatsu, T. Isogami, A. Minassian, and M. J. Damzen, “>100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry,” Opt. Commun. 249, 531–537 (2005)
[Crossref]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001)
[Crossref]

A. Minassian, B. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005)
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi A (1)

Y. L. Mao, P. Z. Deng, and F. X. Gan, “Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT),” Phys. Status Solidi A 193, 329–337 (2002)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for diode-pumped 2 at.% Nd:YAG bounce laser oscillator

Fig. 2.
Fig. 2.

Output power versus pump power for 2 at.% Nd:YAG bounce laser oscillator cavity

Fig. 3.
Fig. 3.

Output power versus pump power for 2 at.% Nd:YAG multimode and TEM00 lasers.

Fig. 4.
Fig. 4.

Output pulse energy versus pump pulse energy for QCW pumped 2 at.% Nd:YAG laser

Fig. 5.
Fig. 5.

Experimental passively Q-switched diode-pumped 2 at.% Nd:YAG laser oscillator

Fig. 6.
Fig. 6.

(a) Output pulse energy versus pump pulse energy for QCW pumped Nd:YAG laser oscillator; and (b) QCW pumped, Q-switched output pulse

Fig. 7.
Fig. 7.

Beam quality measurement and spatial beam profile of QCW pumped, passively Q-switched Nd:YAG-Cr:YAG laser oscillator

Tables (1)

Tables Icon

Table 1. Laser performance of highly doped Nd:YAG

Metrics