Abstract

High efficiency and high power operation of highly-doped 2 at.% crystalline Nd:YAG is demonstrated in a diode-side pumped bounce amplifier configuration. A linearly-polarized output power of 46.1W is obtained with 101W diode pumping representing the highest power achieved to date, to our knowledge, in a highly doped crystalline Nd:YAG laser. In a system operating at 19.1W output power, the slope efficiency was as high as 60%. With quasi-continuous wave diode pumping 11mJ pulses at 100Hz repetition rate were achieved and passive Q-switching with Cr4+:YAG produced pulses with 12ns duration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. A. L'Huillier, G. Bitz, V. Wesemann, P. von Loewis, R. Wallenstein, A. Borsutzky, L. Ackermann, K. Dupre, D. Rytz and S. Vernay, "Characterization and laser performance of a new material: 2 at. % Nd:YAG grown by the Czochralski method," Appl. Opt. 41, 4377-4384 (2002)
    [CrossRef] [PubMed]
  2. P. Gavrilovic, M. S. O'Neill, K. Meehan, J. H. Zarrabi, S. Singh and W. H. Grodkiewicz, "Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd," Appl. Phys. Lett. 60, 1652-1654 (1992)
    [CrossRef]
  3. P. Gavrilovic, M. S. O'Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz and A. Bruce, "High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3µm," Appl. Phys. Lett. 65, 1620-1622 (1994)
    [CrossRef]
  4. Y. Urata, S. Wada, H. Tashiro and P. Z. Deng, "Laser performance of highly neodymium-doped yttrium aluminum garnet crystals," Opt. Lett. 26, 801-803 (2001)
    [CrossRef]
  5. Y. L. Mao, P. Z. Deng and F. X. Gan, "Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT)," Phys. Status Solidi A 193, 329-337 (2002)
    [CrossRef]
  6. Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo and F. X. Gan, "High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology," Chin. Phys. Lett. 19, 1293-1295 (2002)
    [CrossRef]
  7. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics," Appl. Phys. Lett. 77, 939-941 (2000)
    [CrossRef]
  8. T. Omatsu, T. Isogami, A. Minassian and M. J. Damzen, ">100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry," Opt. Commun. 249, 531-537 (2005)
    [CrossRef]
  9. M. J. Damzen, M. Trew, E. Rosas and G. J. Crofts, "Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency," Opt. Commun. 196, 237-241 (2001)
    [CrossRef]
  10. A. Minassian, B. Thompson and M. J. Damzen, "Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser," Appl. Phys. B 76, 341-343 (2003)
    [CrossRef]
  11. A. Minassian, B. Thompson and M. J. Damzen, "High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations," Opt. Commun. 245, 295-300 (2005)
    [CrossRef]
  12. A. Minassian, B. A. Thompson, G. Smith and M. J. Damzen, "High-power scaling (>100W) of a diode-pumped TEM00 Nd:GdVO4 laser system," IEEE J. Sel. Top. Quantum Electron. 11, 621-625 (2005)
    [CrossRef]
  13. T. Omatsu, A. Minassian and M. J. Damzen, "Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry," Opt. Express 13, 7011 - 7016 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7011">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7011</a>
    [CrossRef] [PubMed]
  14. V. Magni, "Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability," Appl. Opt. 25, 107-117 (1986)
    [CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Minassian, B. Thompson and M. J. Damzen, "Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser," Appl. Phys. B 76, 341-343 (2003)
[CrossRef]

Appl. Phys. Lett. (3)

P. Gavrilovic, M. S. O'Neill, K. Meehan, J. H. Zarrabi, S. Singh and W. H. Grodkiewicz, "Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd," Appl. Phys. Lett. 60, 1652-1654 (1992)
[CrossRef]

P. Gavrilovic, M. S. O'Neill, J. H. Zarrabi, S. Singh, J. E. Williams, W. H. Grodkiewicz and A. Bruce, "High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3µm," Appl. Phys. Lett. 65, 1620-1622 (1994)
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped YAG ceramics," Appl. Phys. Lett. 77, 939-941 (2000)
[CrossRef]

Chin. Phys. Lett. (1)

Y. L. Mao, P. Z. Deng, Y. H. Zhang, J. P. Guo and F. X. Gan, "High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology," Chin. Phys. Lett. 19, 1293-1295 (2002)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Minassian, B. A. Thompson, G. Smith and M. J. Damzen, "High-power scaling (>100W) of a diode-pumped TEM00 Nd:GdVO4 laser system," IEEE J. Sel. Top. Quantum Electron. 11, 621-625 (2005)
[CrossRef]

Opt. Commun. (3)

T. Omatsu, T. Isogami, A. Minassian and M. J. Damzen, ">100 kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry," Opt. Commun. 249, 531-537 (2005)
[CrossRef]

M. J. Damzen, M. Trew, E. Rosas and G. J. Crofts, "Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency," Opt. Commun. 196, 237-241 (2001)
[CrossRef]

A. Minassian, B. Thompson and M. J. Damzen, "High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations," Opt. Commun. 245, 295-300 (2005)
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi A (1)

Y. L. Mao, P. Z. Deng and F. X. Gan, "Concentration and temperature dependence of spectroscopic properties of highly-doped Nd:YAG crystal grown by temperature gradient technique (TGT)," Phys. Status Solidi A 193, 329-337 (2002)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for diode-pumped 2 at.% Nd:YAG bounce laser oscillator

Fig. 2.
Fig. 2.

Output power versus pump power for 2 at.% Nd:YAG bounce laser oscillator cavity

Fig. 3.
Fig. 3.

Output power versus pump power for 2 at.% Nd:YAG multimode and TEM00 lasers.

Fig. 4.
Fig. 4.

Output pulse energy versus pump pulse energy for QCW pumped 2 at.% Nd:YAG laser

Fig. 5.
Fig. 5.

Experimental passively Q-switched diode-pumped 2 at.% Nd:YAG laser oscillator

Fig. 6.
Fig. 6.

(a) Output pulse energy versus pump pulse energy for QCW pumped Nd:YAG laser oscillator; and (b) QCW pumped, Q-switched output pulse

Fig. 7.
Fig. 7.

Beam quality measurement and spatial beam profile of QCW pumped, passively Q-switched Nd:YAG-Cr:YAG laser oscillator

Tables (1)

Tables Icon

Table 1. Laser performance of highly doped Nd:YAG

Metrics