Abstract

We demonstrate highly efficient evanescent coupling between a highly nonlinear chalcogenide glass two dimensional photonic crystal waveguide and a silica fiber nanowire. We achieve 98% insertion efficiency to the fundamental photonic crystal waveguide mode with a 3dB coupling bandwidth of 12nm, in good agreement with theory. This scheme provides a promising platform to realize low power nanocavity based all-optical switching and logic functions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. S. Noda, T. Baba, Roadmap on photonic crystals (Springer, 2003).
  4. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764 (2001).
    [CrossRef]
  5. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927-2939 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.</a>
    [CrossRef] [PubMed]
  6. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes” Appl. Phys. Lett. 79, 2312 (2001).
    [CrossRef]
  7. E. Centeno and D. Felbacq, “Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity,” Phys. Rev. B 62, 7683-7686(R) (2000).
    [CrossRef]
  8. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
    [CrossRef]
  9. M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  10. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678-2687 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678</a>
    [CrossRef] [PubMed]
  11. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, E. Kurarmochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 19 (2005).
    [CrossRef]
  12. R. E. Slusher, B. J. Eggleton, Nonlinear photonic crystals (Springer, Berlin, 2003).
  13. M. Soljacic, and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Materials 3, 211-219 (2004).
    [CrossRef] [PubMed]
  14. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140-5145 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140</a>
    [CrossRef] [PubMed]
  15. V. G. Ta’eed, M. Shokook-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900-2902 (2005).
    [CrossRef] [PubMed]
  16. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801-820 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801</a>
    [CrossRef] [PubMed]
  17. F. Raineri, Crina Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal” Appl. Phys. Lett. 85, 1880 (2004).
    [CrossRef]
  18. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 010064 (2005).
    [CrossRef]
  19. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13, 3079-3086 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079</a>
    [CrossRef] [PubMed]
  20. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Opt. Express 14, 369-376 (2006), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-1-369">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-1-369</a>
    [CrossRef] [PubMed]
  21. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85, 4 (2004).
    [CrossRef]
  22. J. Knight, G. Cheung, F. Jacques, and T. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef] [PubMed]
  23. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306(R) (2004).
    [CrossRef]
  24. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “An optical-fiber based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Commun. 23, 1321–1329 (2005).
    [CrossRef]
  25. I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
    [CrossRef]
  26. W. Kuang, C. Kim, A. Stapleton, and J. D. O’Brien, “Grating-assisted coupling of optical fibers and photonic crystal waveguides,” Opt. Lett. 27, 1604–1607 (2002).
    [CrossRef]
  27. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Experimental demonstration of evanescent coupling from optical fiber tapers to photonic crystal waveguides,” Electron. Lett. 39, 842 (2003).
    [CrossRef]
  28. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output optical fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697–699 (2004).
    [CrossRef] [PubMed]
  29. P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Am. B 20, 2274–2284 (2003).
    [CrossRef]
  30. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12, 3209-3217 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209</a>
    [CrossRef] [PubMed]
  31. D. Marcuse, “Bandwith of forward and backward coupling directional couplers,” J. Lightwave Technol. 5 1773-1777 (1987).
    [CrossRef]
  32. M. Qiu, M. Swillo, “Contra-directional coupling between two-dimensional photonic crystal waveguides,” Phot. And Nanostructures (2003).

Appl. Phys. Lett. (5)

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes” Appl. Phys. Lett. 79, 2312 (2001).
[CrossRef]

F. Raineri, Crina Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal” Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85, 4 (2004).
[CrossRef]

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Electron. Lett. (2)

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Experimental demonstration of evanescent coupling from optical fiber tapers to photonic crystal waveguides,” Electron. Lett. 39, 842 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764 (2001).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “An optical-fiber based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Commun. 23, 1321–1329 (2005).
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, “Bandwith of forward and backward coupling directional couplers,” J. Lightwave Technol. 5 1773-1777 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature Materials (1)

M. Soljacic, and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Materials 3, 211-219 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140-5145 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140</a>
[CrossRef] [PubMed]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13, 3079-3086 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079</a>
[CrossRef] [PubMed]

C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Opt. Express 14, 369-376 (2006), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-1-369">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-1-369</a>
[CrossRef] [PubMed]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927-2939 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.</a>
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678-2687 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678</a>
[CrossRef] [PubMed]

Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12, 3209-3217 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209</a>
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801-820 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801</a>
[CrossRef] [PubMed]

Opt. Lett. (6)

Phot. And Nanostructures (1)

M. Qiu, M. Swillo, “Contra-directional coupling between two-dimensional photonic crystal waveguides,” Phot. And Nanostructures (2003).

Phys. Rev. B (2)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306(R) (2004).
[CrossRef]

E. Centeno and D. Felbacq, “Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity,” Phys. Rev. B 62, 7683-7686(R) (2000).
[CrossRef]

Phys. Rev. E (1)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Other (2)

S. Noda, T. Baba, Roadmap on photonic crystals (Springer, 2003).

R. E. Slusher, B. J. Eggleton, Nonlinear photonic crystals (Springer, Berlin, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic showing the coupling scheme of a PCWG and a tapered fiber, in this case backward coupling as explained in section 4. (b) Cross sectional view along YZ axis of the coupling mechanism between the taper and the PCWG. c) Cross sectional view normal to the direction of propagation.

Fig. 2.
Fig. 2.

Scanned electron micrographs of a chalcogenide glass photonic crystal membrane fabricated by focused ion beam (FIB) milling of an AMTIR-1 chalcogenide glass film. left: film imaged at 0°. Right: picture of “W1” defect waveguide.

Fig. 3.
Fig. 3.

(Top) Expimental measurement setup for evanescent coupling from silica nanowire to photonic crystal waveguide. (Bottom) Close up on the taper-PCWG alignment set up.

Fig. 4
Fig. 4

(a) Dispersion diagram for the photonic crystal waveguides (red line) and the nanowire (blue line). Allowed bands of the surrounding photonic crystal are indicated by the shaded red region. Modes above the light line (grey line) that can couple to the continuum of radiative modes are not included. Dashed circle indicates modes for which phasematched coupling occurs. (b) Magnetic field profiles of the fundamental and first higher order PCWG modes.

Fig. 5.
Fig. 5.

Picture of the curved microfiber used in the experiment. The reflection of the taper on the sample is clearly visible in the close up.

Fig. 6.
Fig. 6.

Transmission spectrum of tapered nanowire, in close proximity to chalcogenide glass photonic crystal waveguide, showing resonant coupling. Red curve is for large (>1.5μm) fibre-waveguide separation. Blue curve for a 1 μm separation. Black curve is for direct contact. Transmission spectra have been normalized to the transmission through the taper in absence of the PCWG.

Tables (1)

Tables Icon

Table 1. Experimental evanescent coupling results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β taper = β PCWG ,
Δ λ = 2 λ res 2 κ π ( n PCWG + n taper ) ,
T = 1 tanh 2 ( κL c ) ,

Metrics