Abstract

Vector diffraction theory was applied to study the effect of two-and three-zone annular multi-phase plates (AMPs) on the three-dimensional point-spread-function (PSF) that results when linearly polarized light is focused using a high numerical aperture refractory lens. Conditions are identified for which a three-zone AMP generates a PSF that is axially super-resolved by 19% with minimal change in the transverse profile and sufficiently small side lobes that the intensity pattern could be used for advanced photolithographic techniques, such as multi-photon 3D microfabrication, as well as multi-photon imaging. Conditions are also found in which a three-zone AMP generates a PSF that is axially elongated by 510% with only 1% change along the transverse direction. This intensity distribution could be used for sub-micron-scale laser drilling and machining.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Pereira and A. S. van de Nes, “Superresolution by means of polarization, phase and amplitude pupil masks,” Opt. Commun. 234, 119–124 (2004).
    [CrossRef]
  2. A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley, New York, 2002).
  3. T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997).
    [CrossRef]
  4. T. R. M. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227–230 (1998).
    [CrossRef]
  5. X.-F. Zhao, C.-F. Li, and H. Ruan, “Improvement of three-dimensional resolution in optical data storage by combination of two annular binary phase filters,” Chin. Phys. Lett. 21, 1515–1517 (2004).
    [CrossRef]
  6. S. Zhou and C. Zhou, “Discrete continuous-phase superresolving filters,” Opt. Lett. 29, 2746–2748 (2004).
    [CrossRef] [PubMed]
  7. H. Wang and F. Gan, “High focal depth with pure-phase apodizer,” Appl. Opt. 40, 5658–5662 (2001).
    [CrossRef]
  8. H. Y. Chen, N. Mayhew, E. G. S. Paige, and G. G. Yang, “Design of the point spread function of a lens, binary phase filter combination and its application to photolithography,” Opt. Commun. 119, 381–389 (1995).
    [CrossRef]
  9. G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
    [CrossRef]
  10. C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martínez-Corral, “Quasi-isotropic 3-D resolution in two-photon scanning microscopy,“ Opt. Express 13, 6168–6174 (2005).
    [CrossRef] [PubMed]
  11. C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, “Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization,” Microsc. Res. Tech. 67, 22–26 (2005).
    [CrossRef] [PubMed]
  12. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000).
  13. H. Ando, “Phase-shifting apodizer of three or more portions,” Jap. J. Appl. Phys. 31, 557–567 (1992).
    [CrossRef]
  14. M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
    [CrossRef]
  15. V. F. Canales, J. E. Oti, and M. P. Cagigal, “Three-dimensional control of the focal light intensity distribution by analytically designed phase masks,” Opt. Commun. 247, 11–18 (2005).
    [CrossRef]
  16. D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Design of superresolving continous phase filters,” Opt. Lett. 28, 607–609 (2003).
    [CrossRef] [PubMed]
  17. Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995).
    [CrossRef]
  18. M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodríguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999).
    [CrossRef]
  19. Martínez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, “Tailoring the axial shape of the point spread function using the Toraldo concept,” Opt. Express 10, 98–103 (2002).
    [PubMed]
  20. S. Ching-Cherng and L. Chin-Ku, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
    [CrossRef]
  21. M. Martínez-Corral, C. Ibáñez-López, G. Saavedra, and M. T. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express 11, 1740–1745 (2003).
    [CrossRef] [PubMed]
  22. M. Martínez-Corral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85, 4319–4321 (2004).
    [CrossRef]
  23. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
    [CrossRef] [PubMed]
  24. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Royal Soc. A 253, 349–357 (1959).
    [CrossRef]
  25. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Royal Soc. A 253, 358–379 (1959).
    [CrossRef]
  26. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, in The Adam Hilger Series on Optics and Optoelectronics, E. R. Pike and W. T. Welford, eds., (Adam Hilger, Bristol, 1986).
    [PubMed]
  27. H. Liu, Y. Yan, D. Yi, and G. Jin, “Design of three-dimensional superresolution filters and limits of axial optical superresolution,” Applied Optics 42, 1463–1476 (2003).
    [CrossRef] [PubMed]
  28. S. M. Kuebler and M. Rumi, “Nonlinear optics ╍ applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004).
  29. S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
    [CrossRef]
  30. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
    [CrossRef]
  31. C. J. R. Sheppard and Z. S. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5, 643–647 (1988).
    [CrossRef]

2005 (3)

C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martínez-Corral, “Quasi-isotropic 3-D resolution in two-photon scanning microscopy,“ Opt. Express 13, 6168–6174 (2005).
[CrossRef] [PubMed]

C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, “Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization,” Microsc. Res. Tech. 67, 22–26 (2005).
[CrossRef] [PubMed]

V. F. Canales, J. E. Oti, and M. P. Cagigal, “Three-dimensional control of the focal light intensity distribution by analytically designed phase masks,” Opt. Commun. 247, 11–18 (2005).
[CrossRef]

2004 (6)

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[CrossRef]

X.-F. Zhao, C.-F. Li, and H. Ruan, “Improvement of three-dimensional resolution in optical data storage by combination of two annular binary phase filters,” Chin. Phys. Lett. 21, 1515–1517 (2004).
[CrossRef]

S. Zhou and C. Zhou, “Discrete continuous-phase superresolving filters,” Opt. Lett. 29, 2746–2748 (2004).
[CrossRef] [PubMed]

S. F. Pereira and A. S. van de Nes, “Superresolution by means of polarization, phase and amplitude pupil masks,” Opt. Commun. 234, 119–124 (2004).
[CrossRef]

M. Martínez-Corral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85, 4319–4321 (2004).
[CrossRef]

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
[CrossRef] [PubMed]

2003 (5)

2002 (2)

2001 (2)

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

H. Wang and F. Gan, “High focal depth with pure-phase apodizer,” Appl. Opt. 40, 5658–5662 (2001).
[CrossRef]

1999 (2)

G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
[CrossRef]

M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodríguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999).
[CrossRef]

1998 (1)

T. R. M. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227–230 (1998).
[CrossRef]

1997 (1)

1995 (2)

H. Y. Chen, N. Mayhew, E. G. S. Paige, and G. G. Yang, “Design of the point spread function of a lens, binary phase filter combination and its application to photolithography,” Opt. Commun. 119, 381–389 (1995).
[CrossRef]

Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995).
[CrossRef]

1992 (1)

H. Ando, “Phase-shifting apodizer of three or more portions,” Jap. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

1988 (1)

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Royal Soc. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Royal Soc. A 253, 358–379 (1959).
[CrossRef]

Ando, H.

H. Ando, “Phase-shifting apodizer of three or more portions,” Jap. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

Andrés, P.

M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodríguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999).
[CrossRef]

Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995).
[CrossRef]

Barlow, S.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Boyer, G.

C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, “Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization,” Microsc. Res. Tech. 67, 22–26 (2005).
[CrossRef] [PubMed]

C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martínez-Corral, “Quasi-isotropic 3-D resolution in two-photon scanning microscopy,“ Opt. Express 13, 6168–6174 (2005).
[CrossRef] [PubMed]

Braun, K.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Caballero, M. T.

Cagigal, M. P.

V. F. Canales, J. E. Oti, and M. P. Cagigal, “Three-dimensional control of the focal light intensity distribution by analytically designed phase masks,” Opt. Commun. 247, 11–18 (2005).
[CrossRef]

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[CrossRef]

D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Design of superresolving continous phase filters,” Opt. Lett. 28, 607–609 (2003).
[CrossRef] [PubMed]

Canales, V. F.

V. F. Canales, J. E. Oti, and M. P. Cagigal, “Three-dimensional control of the focal light intensity distribution by analytically designed phase masks,” Opt. Commun. 247, 11–18 (2005).
[CrossRef]

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[CrossRef]

D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Design of superresolving continous phase filters,” Opt. Lett. 28, 607–609 (2003).
[CrossRef] [PubMed]

Chen, H. Y.

H. Y. Chen, N. Mayhew, E. G. S. Paige, and G. G. Yang, “Design of the point spread function of a lens, binary phase filter combination and its application to photolithography,” Opt. Commun. 119, 381–389 (1995).
[CrossRef]

Ching-Cherng, S.

Chin-Ku, L.

Choudhury, A.

Cumpston, B. H.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

de Juana, D. M.

Diaspro, A.

A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley, New York, 2002).

Erskine, L. L.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Escobar, I.

M. Martínez-Corral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85, 4319–4321 (2004).
[CrossRef]

Gan, F.

Hegedus, Z. S.

Heikal, A. A.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Ibáñez-López, C.

Jin, G.

H. Liu, Y. Yan, D. Yi, and G. Jin, “Design of three-dimensional superresolution filters and limits of axial optical superresolution,” Applied Optics 42, 1463–1476 (2003).
[CrossRef] [PubMed]

Kawata, S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[CrossRef]

Kim, M.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[CrossRef]

Kowalczyk, M.

M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodríguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999).
[CrossRef]

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000).

Kuebler, S. M.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

S. M. Kuebler and M. Rumi, “Nonlinear optics ╍ applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004).

Lee, K.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[CrossRef]

Li, C.-F.

X.-F. Zhao, C.-F. Li, and H. Ruan, “Improvement of three-dimensional resolution in optical data storage by combination of two annular binary phase filters,” Chin. Phys. Lett. 21, 1515–1517 (2004).
[CrossRef]

Liu, H.

H. Liu, Y. Yan, D. Yi, and G. Jin, “Design of three-dimensional superresolution filters and limits of axial optical superresolution,” Applied Optics 42, 1463–1476 (2003).
[CrossRef] [PubMed]

Marder, S. R.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Martínez-Corral,

Martínez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, “Tailoring the axial shape of the point spread function using the Toraldo concept,” Opt. Express 10, 98–103 (2002).
[PubMed]

Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995).
[CrossRef]

Martínez-Corral, M.

C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, “Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization,” Microsc. Res. Tech. 67, 22–26 (2005).
[CrossRef] [PubMed]

C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martínez-Corral, “Quasi-isotropic 3-D resolution in two-photon scanning microscopy,“ Opt. Express 13, 6168–6174 (2005).
[CrossRef] [PubMed]

M. Martínez-Corral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85, 4319–4321 (2004).
[CrossRef]

M. Martínez-Corral, C. Ibáñez-López, G. Saavedra, and M. T. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express 11, 1740–1745 (2003).
[CrossRef] [PubMed]

M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodríguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999).
[CrossRef]

Martinez-Cuenca, R.

M. Martínez-Corral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85, 4319–4321 (2004).
[CrossRef]

Mayhew, N.

H. Y. Chen, N. Mayhew, E. G. S. Paige, and G. G. Yang, “Design of the point spread function of a lens, binary phase filter combination and its application to photolithography,” Opt. Commun. 119, 381–389 (1995).
[CrossRef]

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000).

Morris, G. M.

T. R. M. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227–230 (1998).
[CrossRef]

T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997).
[CrossRef]

Ojeda-Castañeda, J.

Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995).
[CrossRef]

Oti, J. E.

V. F. Canales, J. E. Oti, and M. P. Cagigal, “Three-dimensional control of the focal light intensity distribution by analytically designed phase masks,” Opt. Commun. 247, 11–18 (2005).
[CrossRef]

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[CrossRef]

D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Design of superresolving continous phase filters,” Opt. Lett. 28, 607–609 (2003).
[CrossRef] [PubMed]

Paige, E. G. S.

H. Y. Chen, N. Mayhew, E. G. S. Paige, and G. G. Yang, “Design of the point spread function of a lens, binary phase filter combination and its application to photolithography,” Opt. Commun. 119, 381–389 (1995).
[CrossRef]

Pereira, S. F.

S. F. Pereira and A. S. van de Nes, “Superresolution by means of polarization, phase and amplitude pupil masks,” Opt. Commun. 234, 119–124 (2004).
[CrossRef]

Perry, J. W.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Plamann, K.

C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, “Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization,” Microsc. Res. Tech. 67, 22–26 (2005).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Royal Soc. A 253, 358–379 (1959).
[CrossRef]

Ruan, H.

X.-F. Zhao, C.-F. Li, and H. Ruan, “Improvement of three-dimensional resolution in optical data storage by combination of two annular binary phase filters,” Chin. Phys. Lett. 21, 1515–1517 (2004).
[CrossRef]

Rumi, M.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

S. M. Kuebler and M. Rumi, “Nonlinear optics ╍ applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004).

Saavedra, G.

C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, “Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization,” Microsc. Res. Tech. 67, 22–26 (2005).
[CrossRef] [PubMed]

C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martínez-Corral, “Quasi-isotropic 3-D resolution in two-photon scanning microscopy,“ Opt. Express 13, 6168–6174 (2005).
[CrossRef] [PubMed]

M. Martínez-Corral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85, 4319–4321 (2004).
[CrossRef]

M. Martínez-Corral, C. Ibáñez-López, G. Saavedra, and M. T. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express 11, 1740–1745 (2003).
[CrossRef] [PubMed]

Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995).
[CrossRef]

Sales, T. R. M.

T. R. M. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227–230 (1998).
[CrossRef]

T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997).
[CrossRef]

Sheppard, C. J. R.

Stamnes, J. J.

J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, in The Adam Hilger Series on Optics and Optoelectronics, E. R. Pike and W. T. Welford, eds., (Adam Hilger, Bristol, 1986).
[PubMed]

Stelzer, E. H. K.

Sun, H.-B.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[CrossRef]

Swoger, J.

Takada, K.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[CrossRef]

Thayumanavan, S.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Valle, P. J.

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[CrossRef]

van de Nes, A. S.

S. F. Pereira and A. S. van de Nes, “Superresolution by means of polarization, phase and amplitude pupil masks,” Opt. Commun. 234, 119–124 (2004).
[CrossRef]

Wang, H.

Watanabe, T.

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Royal Soc. A 253, 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Royal Soc. A 253, 349–357 (1959).
[CrossRef]

Yan, Y.

H. Liu, Y. Yan, D. Yi, and G. Jin, “Design of three-dimensional superresolution filters and limits of axial optical superresolution,” Applied Optics 42, 1463–1476 (2003).
[CrossRef] [PubMed]

Yang, G.

G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
[CrossRef]

Yang, G. G.

H. Y. Chen, N. Mayhew, E. G. S. Paige, and G. G. Yang, “Design of the point spread function of a lens, binary phase filter combination and its application to photolithography,” Opt. Commun. 119, 381–389 (1995).
[CrossRef]

Yi, D.

H. Liu, Y. Yan, D. Yi, and G. Jin, “Design of three-dimensional superresolution filters and limits of axial optical superresolution,” Applied Optics 42, 1463–1476 (2003).
[CrossRef] [PubMed]

Zapata-Rodríguez, C. J.

M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodríguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999).
[CrossRef]

Zhao, X.-F.

X.-F. Zhao, C.-F. Li, and H. Ruan, “Improvement of three-dimensional resolution in optical data storage by combination of two annular binary phase filters,” Chin. Phys. Lett. 21, 1515–1517 (2004).
[CrossRef]

Zhou, C.

Zhou, S.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Martínez-Corral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85, 4319–4321 (2004).
[CrossRef]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[CrossRef]

Applied Optics (1)

H. Liu, Y. Yan, D. Yi, and G. Jin, “Design of three-dimensional superresolution filters and limits of axial optical superresolution,” Applied Optics 42, 1463–1476 (2003).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

X.-F. Zhao, C.-F. Li, and H. Ruan, “Improvement of three-dimensional resolution in optical data storage by combination of two annular binary phase filters,” Chin. Phys. Lett. 21, 1515–1517 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Photopolym. Sci. Technol. (1)

S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A. Heikal, L. L. Erskine, S. Thayumanavan, S. Barlow, S. R. Marder, and J. W. Perry, “Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication,” J. Photopolym. Sci. Technol. 14, 657–668 (2001).
[CrossRef]

Jap. J. Appl. Phys. (1)

H. Ando, “Phase-shifting apodizer of three or more portions,” Jap. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

Microsc. Res. Tech. (1)

C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, “Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization,” Microsc. Res. Tech. 67, 22–26 (2005).
[CrossRef] [PubMed]

Opt. Commun. (8)

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[CrossRef]

V. F. Canales, J. E. Oti, and M. P. Cagigal, “Three-dimensional control of the focal light intensity distribution by analytically designed phase masks,” Opt. Commun. 247, 11–18 (2005).
[CrossRef]

T. R. M. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227–230 (1998).
[CrossRef]

S. F. Pereira and A. S. van de Nes, “Superresolution by means of polarization, phase and amplitude pupil masks,” Opt. Commun. 234, 119–124 (2004).
[CrossRef]

H. Y. Chen, N. Mayhew, E. G. S. Paige, and G. G. Yang, “Design of the point spread function of a lens, binary phase filter combination and its application to photolithography,” Opt. Commun. 119, 381–389 (1995).
[CrossRef]

G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
[CrossRef]

Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995).
[CrossRef]

M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodríguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. Royal Soc. A (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Royal Soc. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Royal Soc. A 253, 358–379 (1959).
[CrossRef]

Other (4)

J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, in The Adam Hilger Series on Optics and Optoelectronics, E. R. Pike and W. T. Welford, eds., (Adam Hilger, Bristol, 1986).
[PubMed]

S. M. Kuebler and M. Rumi, “Nonlinear optics ╍ applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004).

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000).

A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Front (left) and profile (right) views of an annular multi-phase plate (AMP). The parameters Φi and ri represent the differential phase transmittance and fractional radius of the ith annular zone, respectively.

Fig. 2.
Fig. 2.

Optical geometry in which an AMP is used to modify the phase front and resulting PSF of a focused optical beam.

Fig. 3.
Fig. 3.

Characteristic changes to the axial PSF affected by a two-zone AMP. Shown are (A) the super-resolution factor G, (B) the sub-space of G < 1 on an expanded scale, (C) the side lobe intensity M, and (D) the Strehl ratio S versus [r 1, Φ 2]. The two-dimensional solutions space was discretized by intervals of ΔΦ = 2π/100 and Δr = 0.01. The inset to B shows the normalized double-peaked axial distribution that results for r 1 = 0.7 and Φ 2 = π.

Fig. 4.
Fig. 4.

Characteristic changes to the axial PSF affected by a three-zone AMP having Φ 1 = 0, Φ 2 = π, and Φ 3 = 0 as a function of radial zone boundaries r 1 and r 2. Shown are (A) the super-resolution factor G, (B) the sub-space G < 1 on an expanded scale, (C) the side lobe intensity M, and (D) the Strehl ratio, S. The two-dimensional solutions space [r 1, r 2] was discretized by intervals of Δr = 0.01.

Fig. 5.
Fig. 5.

Sub-space of G versus [r 1, r 2] for a three-zone AMP having Φ 1 = 0, Φ 2 = π, and Φ 3 = 0 for which axial super-resolution is achieved (G < 1) and side lobe intensity remains below 50% of the peak value (M < 0.5).

Fig. 6.
Fig. 6.

Comparison of the focused PSF generated when a three-zone AMP having Φ 1 = 0, Φ 2 = π, Φ 3 = 0, r 1 = 0.58, and r 2 = 0.73 is placed before the lens. (Left-top) Normalized axial and transverse intensity distribution within the plane of polarization (xz-plane) in the diffraction-limit (no AMP) and (Left-bottom) when the three-zone AMP is present. (Right) Axial and transverse intensity distribution of the AMP-modified beam alone. The AMP-generated PSF is axially super-resolved by G axial = 0.81, with M = 0.47 and S = 0.38, whereas the transverse intensity distribution of the central lobe is minimally broadened by G trans = 1.01.

Fig. 7.
Fig. 7.

(Left) Normalized axial and transverse intensity distribution in the plane of polarization (xz-plane) resulting when a three-zone AMP having r 1 = 0.43, r 2 = 0.69, Φ 1 = 0, Φ 2 = π, and Φ 3 = 0 is placed before the lens. The PSF is axially elongated by a factor of G axial = 6.1 yet remains diffraction limited in the transverse direction (G trans = 0.99). (Right) AMP-modified axial intensity distribution (red trace) versus that computed for diffraction limited focusing (no AMP, blue trace).

Fig. 8.
Fig. 8.

Comparison of the axial PSF parameters G and M as calculated using vector diffraction and scalar theory for three-zone AMPs having Φ 1 = 0, Φ 2 = π, and Φ 3 = 0. (A) G vector - G scalar and (B) M vector - M scalar versus [r 1, r 2].

Fig. 9.
Fig. 9.

Comparison of the normalized axial intensity distribution in the plane of polarization (xz-plane) calculated using vector diffraction (EM) and scalar theory at four values of NA for the case in which a three-zone AMP having r 1 = 0.43, r 2 = 0.69, Φ 1 = 0, Φ 2 = π, and Φ 3 = 0 is placed before the lens.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

e x u v φ = iA ( I 0 + I 2 cos 2 φ )
e y u v φ = iA I 2 sin 2 φ
e z u v φ = 2 A I 1 cos φ
u = kz sin 2 α
v = kr sin α
I 0 ( u , v ) = 0 α t ( θ ) cos θ sin θ ( 1 + cos θ ) J 0 ( v sin θ sin α ) exp ( iu cos θ sin 2 α )
I 1 ( u , v ) = 0 α t ( θ ) cos θ sin 2 θ J 1 ( v sin θ sin α ) exp ( iu cos θ sin 2 α )
I 2 ( u , v ) = 0 α t ( θ ) cos θ sin θ ( 1 cos θ ) J 2 ( v sin θ sin α ) exp ( iu cos θ sin 2 α )
E ( u , v = 0 ) = iA 0 α t ( θ ) cos θ sin θ ( 1 + cos θ ) exp ( iu cos θ sin 2 α )

Metrics