Abstract

Two-photon fluorescence and second harmonic generation microscopy have enabled functional and morphological in vivo imaging. However, in vivo applications of those techniques to living animals are limited by bulk optics on a bench top. Fortunately, growing functionality of fiber-optic devices and miniaturization of scanning mirrors stimulate the race to develop nonlinear optical endoscopy. In this paper, we report on a prototype of a nonlinear optical endoscope based on a double-clad photonic crystal fiber to improve the detection efficiency and a MEMS mirror to steer the light at the fiber tip. The miniaturized fiber-optic nonlinear microscope is characterized by rat esophagus imaging. Line profiles from the rat tail tendon and esophagus prove the potential of the technology in in vivo applications.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. W. R. Zipfel, R. M. Williams and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369-1377 (2003).
    [CrossRef]
  2. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356-1360 (2003).
    [CrossRef]
  3. F. Helmchen, M. S. Fee, D. W. Tank and W. Denk, “A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals,” Neuron 31, 903-912 (2001).
    [CrossRef]
  4. D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27, 1031-1033 (2002).
  5. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28, 1552-1554 (2003).
  6. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiology 92, 3121-3133 (2004).
  7. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiology 91, 1908-1912 (2004).
  8. L. Fu, X. Gan, and M. Gu, “Use of single-mode fiber coupler for second-harmonic-generation microscopy,” Opt. Lett. 30, 385-387 (2005).
    [CrossRef]
  9. D. Kim, K. H. Kim, S. Yazdanfar and P. T. C. So, “Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy,” in Multiphoton Microscopy in the Biomedical Sciences V, A. Periasamy and P. T. C. So, eds., Proc. SPIE 5700, 14-22 (2005).
  10. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272-2274 (2005).
    [CrossRef]
  11. J. Y. Ye, M. T. Myaing , T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. St. J. Russell, and T. B. Norris, “Development of a double-clad photonic crystal fiber based scanning microscope,” in Multiphoton Microscopy in the Biomedical Sciences V , A. Periasamy and P. T. C. So, eds., Proc. SPIE 5700, 23-27 (2005).
  12. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13, 5528-5534 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5528.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5528.</a>
    [CrossRef]
  13. H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators 103, 237-241 (2003).
    [CrossRef]
  14. H. Xie, A. Jain, T. Xie, Y. Pan, and G. K. Fedder, “A single-crystal silicon-based micromirror with large scanning angle for biomedical applications,” Conference on Lasers and Electro Optics 2003, Baltimore, MD (2003).
  15. P. Tran, D. Mukai, M. Brenner, and Z. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004).
    [CrossRef]
  16. P. Herz, Y. Chen, A. Aguirre, K. Schneider, P. Hsiung, J. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, "Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2261-2263 (2004).
    [CrossRef]
  17. A. D. Aguirre, P. R. Herz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, S. Hsu, M. Fujino, M. C. Wu, and D. Kopf, “Ultrahigh resolution OCT imaging with a two-dimensional MEMS scanning endoscope,” in Advanced Biomedical and Clinical Diagnostic Systems III, T. Vo-Dinh, W. S. Grundfest , D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 5692, 277-282 (2005).
  18. M. George, “Optical methods and sensors for in situ histology in surgery and endoscopy,” Min. Invas. Ther. & Allied. Technol. 13, 95-104 (2004).
  19. L. Fu, X. Gan, and M. Gu, “Characterization of the GRIN lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44, 7270-7274 (2005).
    [CrossRef]
  20. A. Jain, A. Kopa, Y. Pan, G. K. Fedder and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE journal of selected topics in Quantum electronics 10, 636-642 (2004).
    [CrossRef]

Appl. Opt. (1)

Conference on Lasers and Electro Optics (1)

H. Xie, A. Jain, T. Xie, Y. Pan, and G. K. Fedder, “A single-crystal silicon-based micromirror with large scanning angle for biomedical applications,” Conference on Lasers and Electro Optics 2003, Baltimore, MD (2003).

IEEE journal of selected topics in Quantum electronics (1)

A. Jain, A. Kopa, Y. Pan, G. K. Fedder and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE journal of selected topics in Quantum electronics 10, 636-642 (2004).
[CrossRef]

J. Neurophysiology (2)

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiology 92, 3121-3133 (2004).

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiology 91, 1908-1912 (2004).

Min. Invas. Ther. & Allied. Technol. (1)

M. George, “Optical methods and sensors for in situ histology in surgery and endoscopy,” Min. Invas. Ther. & Allied. Technol. 13, 95-104 (2004).

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank and W. Denk, “A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals,” Neuron 31, 903-912 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Proc. SPIE (3)

J. Y. Ye, M. T. Myaing , T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. St. J. Russell, and T. B. Norris, “Development of a double-clad photonic crystal fiber based scanning microscope,” in Multiphoton Microscopy in the Biomedical Sciences V , A. Periasamy and P. T. C. So, eds., Proc. SPIE 5700, 23-27 (2005).

A. D. Aguirre, P. R. Herz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, S. Hsu, M. Fujino, M. C. Wu, and D. Kopf, “Ultrahigh resolution OCT imaging with a two-dimensional MEMS scanning endoscope,” in Advanced Biomedical and Clinical Diagnostic Systems III, T. Vo-Dinh, W. S. Grundfest , D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 5692, 277-282 (2005).

D. Kim, K. H. Kim, S. Yazdanfar and P. T. C. So, “Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy,” in Multiphoton Microscopy in the Biomedical Sciences V, A. Periasamy and P. T. C. So, eds., Proc. SPIE 5700, 14-22 (2005).

Sens. Actuators (1)

H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators 103, 237-241 (2003).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (224 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics