Abstract

We demonstrate an efficient and versatile spectral microthermography technique for identifying hot and cold spots in the active layer of a biased integrated circuit. Hot (cold) spots are regions where heat accumulates more rapidly (slowly) than the average rate of the entire active layer. Knowledge of the hot and cold spot locations is crucial in assessing the thermal integrity of a layer structure because hot spots are locations were defects are more likely to develop. The active layer is uniformly illuminated with light from a tungsten lamp and its reflectance image r(x, y) is scanned across (x-direction) the entrance slit of a grating-prism pair (GRISM) spectrometer to produce a spectral map R(λ; x, y) where λ is the wavelength [450 ≤ λ(nm) ≤ 650]. For a particular slit position x = x1, the GRISM spectrometer outputs a one-dimensional spectral map R(λ; x1, y). A pair of maps Rub(λ; x, y) and Rb(λ; x, y) are obtained from the active layer in the absence and presence of voltage bias, respectively. A reflectance gradient map ∆R(λ; x, y) = Rb(λ; x, y) - Rub(λ; x, y), is derived and used to locate possible hot and cold spots because ∆R(λ; x, y) is proportional to the temperature gradient ∆T(λ; x, y). We use the technique to generate gradient maps of a photodiode array and the emitting surface of a biased light emitting diode. Two different semiconductor materials could be distinguished easily from their dissimilar reflectance spectra.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
    [CrossRef]
  2. G. Tessier, S. Holé, and D. Fournier, "Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits," Opt. Lett. 28, 875-877, (2003).
    [CrossRef] [PubMed]
  3. J. Kolzer, E. Oesterschulze, and G. Deboy, "Thermal Imaging and Measurement Techniques for Electronic Materials & Devices," Microelectron. Eng 31, 251-270, (1996).
    [CrossRef]
  4. G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998).
  5. J. Christofferson and A. Shakouri, "Thermal measurements of active semiconductor micro-structures acquired through the substrate using near IR thermoreflectance," Microelectron. J. 35, 791-796, (2004).
    [CrossRef]
  6. V. Daria, J. Miranda, and C. Saloma, "High-contrast images of semiconductor sites via one-photon optical beam-induced current imaging and confocal reflectance microscopy," Appl. Opt. 41, 4157 (2002).
    [CrossRef] [PubMed]
  7. J. Miranda and C. Saloma, "Four-dimensional microscopy of defects in integrated circuits," Appl. Opt. 42, 6520 (2003).
    [CrossRef] [PubMed]
  8. V. J. Cemine, B. Buenaobra, C.M. Blanca and C. Saloma, "High contrast microscopy of semiconductor and metals sites in integrated circuits via optical feedback detection," Opt. Lett. 29, 2479-2481 (2004).
    [CrossRef] [PubMed]
  9. C.M. Blanca, V.J. Cemine, V.M. Sastine, C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy", Appl. Phys. Lett. 87, 231104 (2005).
    [CrossRef]
  10. C. Saloma, A. Tarun, M. Bailon and M. Soriano, "Rapid subsurface detection of nanoscale defects in live microprocessors by functional infrared emission spectral microscopy" Appl. Opt. 44, 7302-7306 (2005).
    [CrossRef] [PubMed]

2005

C.M. Blanca, V.J. Cemine, V.M. Sastine, C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy", Appl. Phys. Lett. 87, 231104 (2005).
[CrossRef]

C. Saloma, A. Tarun, M. Bailon and M. Soriano, "Rapid subsurface detection of nanoscale defects in live microprocessors by functional infrared emission spectral microscopy" Appl. Opt. 44, 7302-7306 (2005).
[CrossRef] [PubMed]

2004

V. J. Cemine, B. Buenaobra, C.M. Blanca and C. Saloma, "High contrast microscopy of semiconductor and metals sites in integrated circuits via optical feedback detection," Opt. Lett. 29, 2479-2481 (2004).
[CrossRef] [PubMed]

J. Christofferson and A. Shakouri, "Thermal measurements of active semiconductor micro-structures acquired through the substrate using near IR thermoreflectance," Microelectron. J. 35, 791-796, (2004).
[CrossRef]

2003

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
[CrossRef]

G. Tessier, S. Holé, and D. Fournier, "Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits," Opt. Lett. 28, 875-877, (2003).
[CrossRef] [PubMed]

J. Miranda and C. Saloma, "Four-dimensional microscopy of defects in integrated circuits," Appl. Opt. 42, 6520 (2003).
[CrossRef] [PubMed]

2002

1996

J. Kolzer, E. Oesterschulze, and G. Deboy, "Thermal Imaging and Measurement Techniques for Electronic Materials & Devices," Microelectron. Eng 31, 251-270, (1996).
[CrossRef]

Bailon, M.

Blanca, C.M.

C.M. Blanca, V.J. Cemine, V.M. Sastine, C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy", Appl. Phys. Lett. 87, 231104 (2005).
[CrossRef]

V. J. Cemine, B. Buenaobra, C.M. Blanca and C. Saloma, "High contrast microscopy of semiconductor and metals sites in integrated circuits via optical feedback detection," Opt. Lett. 29, 2479-2481 (2004).
[CrossRef] [PubMed]

Buenaobra, B.

Cemine, V. J.

Cemine, V.J.

C.M. Blanca, V.J. Cemine, V.M. Sastine, C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy", Appl. Phys. Lett. 87, 231104 (2005).
[CrossRef]

Christofferson, J.

J. Christofferson and A. Shakouri, "Thermal measurements of active semiconductor micro-structures acquired through the substrate using near IR thermoreflectance," Microelectron. J. 35, 791-796, (2004).
[CrossRef]

Daria, V.

Deboy, G.

J. Kolzer, E. Oesterschulze, and G. Deboy, "Thermal Imaging and Measurement Techniques for Electronic Materials & Devices," Microelectron. Eng 31, 251-270, (1996).
[CrossRef]

Filloy, C.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
[CrossRef]

Fournier, D.

G. Tessier, S. Holé, and D. Fournier, "Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits," Opt. Lett. 28, 875-877, (2003).
[CrossRef] [PubMed]

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
[CrossRef]

Holé, S.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
[CrossRef]

G. Tessier, S. Holé, and D. Fournier, "Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits," Opt. Lett. 28, 875-877, (2003).
[CrossRef] [PubMed]

Jerosolimski, G.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
[CrossRef]

Kolzer, J.

J. Kolzer, E. Oesterschulze, and G. Deboy, "Thermal Imaging and Measurement Techniques for Electronic Materials & Devices," Microelectron. Eng 31, 251-270, (1996).
[CrossRef]

Miranda, J.

Oesterschulze, E.

J. Kolzer, E. Oesterschulze, and G. Deboy, "Thermal Imaging and Measurement Techniques for Electronic Materials & Devices," Microelectron. Eng 31, 251-270, (1996).
[CrossRef]

Saloma, C.

Sastine, V.M.

C.M. Blanca, V.J. Cemine, V.M. Sastine, C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy", Appl. Phys. Lett. 87, 231104 (2005).
[CrossRef]

Shakouri, A.

J. Christofferson and A. Shakouri, "Thermal measurements of active semiconductor micro-structures acquired through the substrate using near IR thermoreflectance," Microelectron. J. 35, 791-796, (2004).
[CrossRef]

Soriano, M.

Tarun, A.

Tessier, G.

G. Tessier, S. Holé, and D. Fournier, "Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits," Opt. Lett. 28, 875-877, (2003).
[CrossRef] [PubMed]

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C.M. Blanca, V.J. Cemine, V.M. Sastine, C. Saloma, "High-resolution differential thermography of integrated circuits with optical feedback laser scanning microscopy", Appl. Phys. Lett. 87, 231104 (2005).
[CrossRef]

Microelectron. Eng

J. Kolzer, E. Oesterschulze, and G. Deboy, "Thermal Imaging and Measurement Techniques for Electronic Materials & Devices," Microelectron. Eng 31, 251-270, (1996).
[CrossRef]

Microelectron. J.

J. Christofferson and A. Shakouri, "Thermal measurements of active semiconductor micro-structures acquired through the substrate using near IR thermoreflectance," Microelectron. J. 35, 791-796, (2004).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

G. Tessier, G. Jerosolimski, S. Holé, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74, 495-499, (2003).
[CrossRef]

Other

G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Microthermography setup, (b) Control reflectance spectrum from flat mirror, and (c) Orientation of line scans and corresponding set of reflectance spectra.

Fig. 2.
Fig. 2.

(a) Reflectance image (300 × 300 μm2) of Au-GaAs structure, and (b) measured reflectance spectra (resolution = 10 nm) from two different sites.

Fig. 3.
Fig. 3.

Photodiode array sample. Spectral maps (480 × 480 μm2) at λ = 478 nm (a), 559 (b), and 641 (c). In (d) is the wide-field reflectance image and in (e) is the superposition of images in (a)–(c). Shown in (f) are the reflectance spectra from selected locations of the composite image in (e). Image intensity scale: black = 0.

Fig. 4.
Fig. 4.

Maps of reflectance gradient +∆R [(a), (c)] and -∆R [(b), (d)] at λ = 613 nm and T = 25°C [(a), (b)] and 47°C [(c), (d)]. Image field of view is same as in Fig. 3.

Fig. 5.
Fig. 5.

[(a)–(c)] Luminescence map (480 × 480 μm2) of surface emitting LED at different wavelengths. [(d)–(f)] Corresponding unmixed +∆R maps of the same field of view.

Metrics