Abstract

A numerical deconvolution method to cancel lateral defocus in Fourier domain optical coherence tomography (FD-OCT) is presented. This method uses a depth-dependent lateral point spread function and some approximations to design a deconvolution filter for the cancellation of lateral defocus. Improved lateral resolutions are theoretically estimated; consequently, the effect of lateral superresolution in this method is derived. The superresolution is experimentally confirmed by a razor blade test, and an intuitive physical interpretation of this effect is presented. The razor blade test also confirms that this method enhances the signal-to-noise ratio of OCT. This method is applied to OCT images of medical samples, in vivo human anterior eye segments, and exhibits its potential to cancel the defocusing of practical OCT images. The validity and restrictions involved in each approximation employed to design the deconvolution filter are discussed. A chromatic and a two-dimensional extensions of this method are also described.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  3. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [CrossRef]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  5. Gerd Häusler and Michael Walter Lindner, “ ‘Coherence radar’ and ‘spectral radar’ —New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  6. P. Andretzky, M.W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. H ausler , “Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin,” Proc. SPIE 3567, 78–87 (1999).
    [CrossRef]
  7. T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys. 38, 6133– 6137 (1999).
    [CrossRef]
  8. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher,” Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  9. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma,” “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183">http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183</a>.
    [CrossRef] [PubMed]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953">http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953</a>.
    [CrossRef] [PubMed]
  12. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367">http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367</a>.
    [CrossRef] [PubMed]
  13. R. Huber,M.Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13 3513–3528 (2005), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3513">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3513</a>.
    [CrossRef] [PubMed]
  14. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [CrossRef] [PubMed]
  15. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
    [CrossRef] [PubMed]
  16. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>.
    [CrossRef] [PubMed]
  17. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, and J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
    [CrossRef] [PubMed]
  18. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>.
    [CrossRef] [PubMed]
  19. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 12, 444–452 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444</a>.
    [CrossRef]
  20. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
    [CrossRef] [PubMed]
  21. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imagingof in vivo blood flow velocity usingoptical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef] [PubMed]
  22. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. de Boer, and J. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood f low in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  23. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
    [CrossRef]
  24. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
    [CrossRef]
  25. J. Zhang, W. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033–6039 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033</a>.
    [CrossRef] [PubMed]
  26. B. Park, M. Pierce, B. Cense, S. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ∫m,” Opt. Express 13, 3931–3944 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931</a>.
    [CrossRef] [PubMed]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>.
    [CrossRef] [PubMed]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra- high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490-3497 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>.
    [CrossRef] [PubMed]
  29. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M.Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004).
    [CrossRef] [PubMed]
  30. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G.P. Li, and Z. P. Chen, “Frequency domain phase-resolved optical Doppler and Deppler variance tomography,” Opt. Commun. 242, 345–350 (2005).
    [CrossRef]
  31. J. Zhang, and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13, 7449–7457 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449</a>.
    [CrossRef] [PubMed]
  32. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
    [CrossRef] [PubMed]
  33. C. Joo, T. Akkin, B. Cense, B. Park, and J. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–2133 (2005).
    [CrossRef] [PubMed]
  34. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>.
    [CrossRef] [PubMed]
  35. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8532">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8532</a>.
    [CrossRef] [PubMed]
  36. M. D. Kulkarni,C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33 1365–1367 (1997).
    [CrossRef]
  37. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
    [CrossRef]
  38. D. Piao, Q. Zhu, N. Dutta, S. Yan, and L. Otis, “Cancellation of coherent artifacts in optical coherence tomography imaging,” Appl. Opt. 40, 5124–5131 (2001).
    [CrossRef]
  39. I. J. Hsu, C.W. Sun, C.W. Lu, C. C. Yang, C. P. Chiang, and C.W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42, 227–234 (2003).
    [CrossRef] [PubMed]
  40. M. Bashkansky, M.D. Duncan, J. Reintjes, and P.R. Battle, “Signal processing for improving field cross-correlation function in optical coherence tomography,” Appl. Opt. 37, 8137–8138 (1998).
  41. R. Tripathi, N. Nassif, J. Nelson, B. Park, and J. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
    [CrossRef]
  42. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczy´nska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2004).
    [CrossRef]
  43. E.g., James G. Fujimoto, “Handbook of optical coherence tomography,” Chapter 1, Edited by G.R. Bouma, G.J. Tearney, Marcel Dekker, Inc. (2002).
  44. D. J Smithies, T. Lindmo, Z. P. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
    [CrossRef] [PubMed]
  45. C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [CrossRef]
  46. E.g., J. W. Goodman, “Introduction to Fourier optics,” 2nd ed., The McGraw-Hill Companies, Inc. (1996).

Appl. Opt.

Appl. Phys. Lett.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Cancellation of coherent artifacts in optical coherence tomography imaging

D. Piao, Q. Zhu, N. Dutta, S. Yan, and L. Otis, “Cancellation of coherent artifacts in optical coherence tomography imaging,” Appl. Opt. 40, 5124–5131 (2001).
[CrossRef]

Electron. Lett.

M. D. Kulkarni,C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33 1365–1367 (1997).
[CrossRef]

J. Biomed. Opt.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef]

Gerd Häusler and Michael Walter Lindner, “ ‘Coherence radar’ and ‘spectral radar’ —New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys. 38, 6133– 6137 (1999).
[CrossRef]

Ophthalmology

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G.P. Li, and Z. P. Chen, “Frequency domain phase-resolved optical Doppler and Deppler variance tomography,” Opt. Commun. 242, 345–350 (2005).
[CrossRef]

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczy´nska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2004).
[CrossRef]

Opt. Express

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 12, 444–452 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444</a>.
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher,” Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367">http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367</a>.
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183">http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183</a>.
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>.
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, and J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>.
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033–6039 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033</a>.
[CrossRef] [PubMed]

R. Huber,M.Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13 3513–3528 (2005), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3513">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3513</a>.
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953">http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953</a>.
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>.
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra- high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490-3497 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>.
[CrossRef] [PubMed]

B. Park, M. Pierce, B. Cense, S. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ∫m,” Opt. Express 13, 3931–3944 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931</a>.
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>.
[CrossRef] [PubMed]

J. Zhang, and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13, 7449–7457 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449</a>.
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8532">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8532</a>.
[CrossRef] [PubMed]

Opt. Lett.

C. Joo, T. Akkin, B. Cense, B. Park, and J. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–2133 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M.Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma,” “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. de Boer, and J. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood f low in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imagingof in vivo blood flow velocity usingoptical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

R. Tripathi, N. Nassif, J. Nelson, B. Park, and J. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

Phys. Med. Biol.

D. J Smithies, T. Lindmo, Z. P. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

Proc. SPIE

P. Andretzky, M.W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. H ausler , “Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin,” Proc. SPIE 3567, 78–87 (1999).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

E.g., J. W. Goodman, “Introduction to Fourier optics,” 2nd ed., The McGraw-Hill Companies, Inc. (1996).

E.g., James G. Fujimoto, “Handbook of optical coherence tomography,” Chapter 1, Edited by G.R. Bouma, G.J. Tearney, Marcel Dekker, Inc. (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the FD-OCT under consideration; this is based on a broadband Michelson interferometer.

Fig. 2.
Fig. 2.

Schematic diagram of probe optics. z = 0 on the focal plane, and z takes positive values on the right-hand-side of the focal plane.

Fig. 3.
Fig. 3.

Flow diagram of an algorithm to apply the deconvolution filter to detected spectral interferograms. N denotes the number of A-scans/B-scan, M denotes the number of wave-length bins, and DFT x and DFT k represent the discrete Fourier transform along space x and optical frequency k, respectively.

Fig. 4.
Fig. 4.

Theoretical resolution curve based on Eq. (13). The considered optical parameters are d = 1.5 mm, f = 60 mm, and λ = 838 nm.

Fig. 5.
Fig. 5.

(a) A raw OCT image obtained from the razor blade test and (b) an improved OCT image obtained by the deconvolution method. Intensity profiles of the surface; (c) corresponds to (b).

Fig. 6.
Fig. 6.

The original (red curve) and improved (blue curve) 20–80 width of the razor blade test. The black solid line represents the in-focus 20–80 width.

Fig. 7.
Fig. 7.

FD-OCT images of in vivo human anterior eye segments. (a) is an in-focus OCT image, (b) and (d) are OCT images with 4-mm and 8-mm defocus, and (c) and (e) are OCT images with deconvolution. IR denotes the iris and CL denotes the crystalline lens.

Fig. 8.
Fig. 8.

Flow of the chromatic algorithm.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Δ x = 4 λ π ( f d )
DOF = 8 λ π ( f d ) 2
u ( x ) [ exp ( παx 2 ) ] ξ = x λf exp ( π x 2 α λ 2 f 2 )
p ( x , z 0 ) exp ( π α λ 2 f 2 α 2 λ 4 f 4 + λ 2 z 0 2 x 2 ) exp ( i π λ z 0 α 2 λ 4 f 4 + λ 2 z 0 2 x 2 ) .
q x z 0 = exp ( λ z 0 α 2 λ 4 f 4 + λ 2 z 0 2 x 2 ) .
c 0 z 0 = p x z 0 f x z 0 q x z 0 dx .
c x z 0 = p ( x x , z 0 ) f x z 0 q x x z 0 dx = { p x z 0 q x z 0 } f x z 0
h x z 0 = p x z 0 q x z 0 = exp ( π α λ 2 f 2 α 2 λ 4 f 4 + λ 2 z 0 2 x 2 ) exp ( i 2 π λ z 0 α 2 λ 4 f 4 + λ 2 z 0 2 x 2 ) .
H 1 ( ξ ) exp ( π a a 2 + b 2 ξ 2 ) exp ( i π a a 2 + b 2 ξ 2 )
α 2 λ 4 f 4 λ 2 z 0 2
z 0 4 λ π ( f d ) 2 = 1 2 DOF
H 1 ( ξ ) = exp ( λ z 0 2 ξ 2 ) .
Δ x ( z 0 ) = 2 1 π [ γα λ 2 f 2 + z 0 2 ( 1 2 2 γ ) 2 α f 2 γ ]
s ( x ) = 1 1 + e η ( x ε )
Δ x 20 80 = ln 2 . ln 5 4 Δ x .
l z 3 > π 4 λ [ ( W x + W x 2 ) 4 ] max
f > [ π 4 λ ( d 2 ) 4 ] 1 3
z 0 > ( λ π DOF 2 ) 1 3
h ( x ) = exp ( πa x 2 ) exp ( iπb x 2 ) exp ( σ x 2 )
H ( ξ ) = exp ( σ x 2 ) exp ( i 2 πξx ) dx
= exp { σ ( x + ρ 2 ) 2 + σ ρ 2 4 } dx
= exp ( σ ρ 2 4 ) exp { σ ( x + ρ 2 ) 2 } dx
exp ( x 2 β ) dx = πβ .
H ( ξ ) = π σ exp ( σ ρ 2 4 ) = 1 a ib exp ( π 1 a ib ξ 2 )
= 1 a ib exp ( π a a 2 + b 2 ξ 2 ) exp ( i π b a 2 + b 2 ξ 2 ) .
H 1 ( ξ ) = a ib exp ( π a a 2 + b 2 ξ 2 ) exp ( b a 2 + b 2 ξ 2 ) .
π b a 2 + b 2 = π b = π ( α 2 λ 4 f 4 + λ 2 z 0 2 2 λ z 0 ) = π ( α 2 λ 4 f 4 2 λ z 0 + λ 2 z 0 2 λ ) .

Metrics