Abstract

It is commonly believed that thermal energy remaining in a target is negligible following femtosecond laser ablation. In contrast to this belief, however, we observe a significant enhancement in thermal energy retained in a target following single-pulse ablation. Ambient gas plasmas produced near the sample surface are shown to play a key role in the enhanced residual energy coupling. Our study reveals, for the first time, an enhanced energy coupling in single-shot high-intensity femtosecond laser-metal interactions and provides new guidelines for a broad range of technological applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
    [CrossRef] [PubMed]
  2. P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995).
    [CrossRef]
  3. A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
    [CrossRef]
  4. A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
    [CrossRef]
  5. W. E. Maher, D. B. Nichols, and R. B. Hall, "Multiple-pulse thermal coupling at 3.8-μm wavelength," Appl. Phys. Lett. 37, 12-14 (1980).
    [CrossRef]
  6. G. G. Gubareff, J. E. Janssen, and R. H. Torborg, Thermal Radiation Properties Survey, 2nd ed. (Minneapolis Honeywell Regulator Co., Minneapolis, MN, 1960).
  7. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 11th ed. (Longmans, London, 1956).
  8. J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
    [CrossRef]
  9. A. Y. Vorobyev, "Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum," Sov. J. Quantum Electron. 15, 490-493 (1985).
    [CrossRef]
  10. Laser-Induced Plasmas and Applications, L. J. Radziemski and D.A. Cremers, eds. (Marcel Dekker, Inc., New York, 1989).
  11. H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
    [CrossRef]
  12. C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Phys. Rev. A 58, R4271-R4274 (1998).
    [CrossRef]
  13. J. G. Fujimoto, J. M. Liu, and E. P. Ippen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
    [CrossRef]
  14. S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76,31-33 (2000).
    [CrossRef]
  15. J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
    [CrossRef]
  16. J. König, S. Nolte, and A. Tünnermann, "Plasma evolution during metal ablation with ultrashort laser pulses," Opt. Express,  13, 10597 (2005).
    [CrossRef] [PubMed]

2005 (3)

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

J. König, S. Nolte, and A. Tünnermann, "Plasma evolution during metal ablation with ultrashort laser pulses," Opt. Express,  13, 10597 (2005).
[CrossRef] [PubMed]

2000 (1)

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76,31-33 (2000).
[CrossRef]

1998 (1)

C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Phys. Rev. A 58, R4271-R4274 (1998).
[CrossRef]

1996 (1)

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
[CrossRef]

1995 (2)

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995).
[CrossRef]

1985 (1)

A. Y. Vorobyev, "Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum," Sov. J. Quantum Electron. 15, 490-493 (1985).
[CrossRef]

1984 (1)

J. G. Fujimoto, J. M. Liu, and E. P. Ippen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

1980 (2)

J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
[CrossRef]

W. E. Maher, D. B. Nichols, and R. B. Hall, "Multiple-pulse thermal coupling at 3.8-μm wavelength," Appl. Phys. Lett. 37, 12-14 (1980).
[CrossRef]

1979 (1)

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Antonsen, T. M.

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
[CrossRef]

Bleach, R. D.

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Clark, T. R.

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
[CrossRef]

Cronburg, T. L.

J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
[CrossRef]

Du, D.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995).
[CrossRef]

Durfee, C. G.

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995).
[CrossRef]

Eninger, J. E.

J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, J. M. Liu, and E. P. Ippen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

Gibson, G. N.

C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Phys. Rev. A 58, R4271-R4274 (1998).
[CrossRef]

Greif, R.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76,31-33 (2000).
[CrossRef]

Guethlein, G.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Phys. Rev. A 58, R4271-R4274 (1998).
[CrossRef]

Hall, R. B.

W. E. Maher, D. B. Nichols, and R. B. Hall, "Multiple-pulse thermal coupling at 3.8-μm wavelength," Appl. Phys. Lett. 37, 12-14 (1980).
[CrossRef]

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Ippen, E. P.

J. G. Fujimoto, J. M. Liu, and E. P. Ippen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

König, J.

Li, M.

C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Phys. Rev. A 58, R4271-R4274 (1998).
[CrossRef]

Liu, J. M.

J. G. Fujimoto, J. M. Liu, and E. P. Ippen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

Maher, W. E.

W. E. Maher, D. B. Nichols, and R. B. Hall, "Multiple-pulse thermal coupling at 3.8-μm wavelength," Appl. Phys. Lett. 37, 12-14 (1980).
[CrossRef]

Manlief, S. K.

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Mao, S. S.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76,31-33 (2000).
[CrossRef]

Mao, X.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76,31-33 (2000).
[CrossRef]

McKay, J. A.

J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
[CrossRef]

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Milchberg, H. M.

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
[CrossRef]

Mora, P.

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
[CrossRef]

More, R. M.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

Nagel, D. J.

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Nibarger, J. P.

C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Phys. Rev. A 58, R4271-R4274 (1998).
[CrossRef]

Nichols, D. B.

W. E. Maher, D. B. Nichols, and R. B. Hall, "Multiple-pulse thermal coupling at 3.8-μm wavelength," Appl. Phys. Lett. 37, 12-14 (1980).
[CrossRef]

Nolte, S.

Pond, C. R.

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Price, D. F.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995).
[CrossRef]

Russo, R. E.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76,31-33 (2000).
[CrossRef]

Schriemph, J. T.

J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
[CrossRef]

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

Shepherd, R. L.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

Singh, R. K.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995).
[CrossRef]

Stewart, R. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

Tünnermann, A.

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

A. Y. Vorobyev, "Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum," Sov. J. Quantum Electron. 15, 490-493 (1985).
[CrossRef]

Walling, R. S.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

White, W. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

Woodroffe, J. A.

J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
[CrossRef]

Appl. Phys. Lett. (4)

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 011916 (2005).
[CrossRef]

W. E. Maher, D. B. Nichols, and R. B. Hall, "Multiple-pulse thermal coupling at 3.8-μm wavelength," Appl. Phys. Lett. 37, 12-14 (1980).
[CrossRef]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76,31-33 (2000).
[CrossRef]

J. A. McKay, J. T. Schriemph, T. L. Cronburg, J. E. Eninger, and J. A. Woodroffe, "Pulsed CO2 laser interaction with a metal surface at oblique incidence," Appl. Phys. Lett. 36, 125-127 (1980).
[CrossRef]

J. Appl. Phys. (2)

J. A. McKay, R. D. Bleach, D. J. Nagel, J. T. Schriemph, R. B. Hall, C. R. Pond, and S. K. Manlief, "Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics," J. Appl. Phys. 50, 3231-3240 (1979).
[CrossRef]

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995).
[CrossRef]

Opt. Express (1)

Phys. Plasmas (1)

H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, "Development and applications of a plasma waveguide for intense laser pulses," Phys. Plasmas 3, 2149-2155 (1996).
[CrossRef]

Phys. Rev. A (1)

C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Phys. Rev. A 58, R4271-R4274 (1998).
[CrossRef]

Phys. Rev. B (1)

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multi-pulse femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252-255 (1995).
[CrossRef] [PubMed]

J. G. Fujimoto, J. M. Liu, and E. P. Ippen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. Y. Vorobyev, "Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum," Sov. J. Quantum Electron. 15, 490-493 (1985).
[CrossRef]

Other (3)

Laser-Induced Plasmas and Applications, L. J. Radziemski and D.A. Cremers, eds. (Marcel Dekker, Inc., New York, 1989).

G. G. Gubareff, J. E. Janssen, and R. H. Torborg, Thermal Radiation Properties Survey, 2nd ed. (Minneapolis Honeywell Regulator Co., Minneapolis, MN, 1960).

G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 11th ed. (Longmans, London, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Residual energy coefficient for zinc as a function of laser fluence in 1-atm air and in vacuum (P=0.01 Torr). The thresholds marked in the plot are determined in 1-atm air.

Fig. 2.
Fig. 2.

Residual energy coefficient for platinum as a function of laser fluence at various air pressures. The thresholds marked in the plot are determined in 1-atm air.

Fig. 3.
Fig. 3.

Residual energy coefficient for platinum as a function of laser fluence in He, Ne, and Ar at a pressure of 1.08 atm.

Fig. 4.
Fig. 4.

SEM images of the redeposited material on Pt samples following multi-pulse ablation at F=1.4 J/cm2 in (a) vacuum and (b) air. The amount of material redeposited around the crater in air is greater than in vacuum.

Metrics