Abstract

Using a novel dual-beam readout with the generalized phase contrast (GPC) method, a multiple-beam 3D real-time micromanipulation system requiring only one spatial light modulator (SLM) has been realized. A theoretical framework for the new GPC scheme with two parallel illumination beams is presented and corroborated with an experimental demonstration. Three-dimensional arrays of polystyrene microbeads were assembled in the newly described system. The use of air immersion objective lenses with GPC-based optical trapping allowed the simultaneous viewing of the assemblies in two orthogonal bright-field imaging perspectives.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  3. K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
    [CrossRef]
  4. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004).
    [CrossRef] [PubMed]
  5. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
    [CrossRef]
  6. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24,608-610 (1999).
    [CrossRef]
  7. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12,5475-5480 (2004).
    [CrossRef] [PubMed]
  8. J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268-282 (2001).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, Second Edition (McGraw-Hill, New York, 1996).
  10. I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18,2852-2857 (2005).
    [CrossRef]

2006

K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
[CrossRef]

2005

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18,2852-2857 (2005).
[CrossRef]

2004

2003

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2001

1999

1970

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Ashkin, A.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Cooper, J.

Courtial, J.

Daria, V. R.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
[CrossRef]

Glückstad, J.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18,2852-2857 (2005).
[CrossRef]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004).
[CrossRef] [PubMed]

J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268-282 (2001).
[CrossRef]

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Haist, T.

Jordan, P.

Laczik, Z. J.

Mogensen, P. C.

Padgett, M.

Perch-Nielsen, I. R.

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18,2852-2857 (2005).
[CrossRef]

Reece, P.

K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
[CrossRef]

Reicherter, M.

Rodrigo, P. J.

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18,2852-2857 (2005).
[CrossRef]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004).
[CrossRef] [PubMed]

Sinclair, G.

Tiziani, H. J.

Wagemann, E. U.

Appl. Opt.

Appl. Phys. Lett.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

Nano Today

K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
[CrossRef]

Nature

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Express

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12,5475-5480 (2004).
[CrossRef] [PubMed]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18,2852-2857 (2005).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, Second Edition (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

4f setup for implementing the GPC method with dual-beam illumination onto circular regions R 1 and R 2 of the spatial light modulator (SLM; Hamamatsu www.hamamatsu.com); PCF, phase contrast filter; L1 and L2, lenses (focal length=300 mm).

Fig. 2.
Fig. 2.

Comparison of theoretically (solid curve in the line-scan) and experimentally obtained intensity patterns at the image plane of a GPC 4f setup with two adjacent input beams (modeled with tophat intensity profiles) (a) in the absence of the PCF, (b) with an aligned PCF and a binary phase-dot array input, and (c) with an aligned PCF and a multilevel phase-dot array input. Line-scans are taken along the green lines.

Fig. 3.
Fig. 3.

Schematic diagram of the proposed optical micromanipulation system. SLM, spatial light modulator; PCF, phase contrast filter; M, mirror; L1 and L2, achromats (focal length=300 mm); L3 and L4, achromats (focal length=400 mm); L5 and L6, singlets (focal length=300 mm and 200 mm, respectively); BS, beam splitter, DM, dicrhoic mirror; O1 and O2, trapping objective lenses (x50, NA=0.55); O3, yz-view objective lens (x50, NA=0.55); CCD1, xy-view camera; CCD2, yz-view camera.

Fig. 4.
Fig. 4.

Optically assembled arrays of 3-µm diameter polystyrene spheres in 3D simultaneously viewed in xy (top frame) and yz planes (bottom frame). (a)–(b) Two of three spheres are translated in the xy-plane. (c) Eight spheres optically positioned and stably kept in the corners of a virtual parallelepiped.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

e ( x , y ) = circ ( ( x + x 0 ) 2 + y 2 Δ r ) exp ( j ϕ 1 ( x + x 0 , y ) )
+ circ ( ( x x 0 ) 2 + y 2 Δ r ) exp ( j ϕ 2 ( x x 0 , y ) ) ,
H ( f x , f y ) = A [ 1 + ( B A 1 exp ( j θ ) 1 ) circ ( f x 2 + f y 2 Δ f r ) ] ,
{ H ( f x , f y ) { e ( x , y ) } } = circ ( ( x + x 0 ) 2 + y 2 Δ r ) exp ( j ϕ 1 ( x + x 0 , y ) )
2 α ¯ 1 { circ ( f x 2 + f y 2 Δ f r ) { circ ( x 2 + y 2 Δ r ) } exp ( j 2 π f x x 0 ) }
+ circ ( ( x x 0 ) 2 + y 2 Δ r ) exp ( j ϕ 2 ( x x 0 , y ) )
2 α ¯ 2 { circ ( f x 2 + f y 2 Δ f r ) { circ ( x 2 + y 2 Δ r ) } exp ( j 2 π f x x 0 ) }
α ¯ i = [ π ( Δ r ) 2 ] 1 R i exp ( j ϕ i ) d x d y ; for i = 1,2 .
g ( r ) = { circ ( f r Δ f r ) { circ ( r Δ r ) } }
= 2 π Δ r 0 Δ f r J 1 ( 2 π Δ r f r ) J 0 ( 2 π r f r ) d f r ,
I ( x , y ) = e 1 ( x , y ) + e 2 ( x , y ) 2 ,
e 1 ( x , y ) = circ ( ( x + x 0 ) 2 + y 2 Δ r ) exp ( j ϕ 1 ( x + x 0 , y ) ) 2 α ¯ 1 g ( ( x + x 0 ) 2 + y 2 )
e 2 ( x , y ) = circ ( ( x x 0 ) 2 + y 2 Δ r ) exp ( j ϕ 2 ( x x 0 , y ) ) 2 α ¯ 2 g ( ( x x 0 ) 2 + y 2 ) .

Metrics