Abstract

We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
    [CrossRef]
  2. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002).
    [CrossRef]
  3. T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29,2797-2799 (2004).
    [CrossRef] [PubMed]
  4. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
    [CrossRef]
  5. C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84,3762-3764 (2004).
    [CrossRef]
  6. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita and S. W. Nam, "Long distance decoy state quantum key distribution in optical fiber," quant-ph/0607186 (2006).
  7. C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175-179.
  8. N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61,052304 (2000).
    [CrossRef]
  9. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000).
    [CrossRef] [PubMed]
  10. C. Gobby, Z. L. Yuan and A. J. Shields, "Unconditionally secure quantum key distribution over 50 km of standard telecom fibre," Electron. Lett. 40,1603-1605 (2004).
    [CrossRef]
  11. Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian, "Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber," Proc. IEEE Int. Symp. Inf. Theor. 2006, 2094-2098.
  12. H.-K. Lo, X. Ma and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005).
    [CrossRef] [PubMed]
  13. X.-B. Wang, "Beating the Photon-number-splitting attack in practical Quantum Cryptography," Phys. Rev. Lett. 94,230503 (2005).
    [CrossRef] [PubMed]
  14. K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quanum key distribution," Phys. Rev. Lett. 89,037902 (2002).
    [CrossRef] [PubMed]
  15. K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quanum key distribution using coherent light," Phys. Rev. A 68,022317 (2003).
    [CrossRef]
  16. E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
    [CrossRef]
  17. K. Inoue and T. Honjo, "Robustness of differential-phase-shift quanum key distribution against photon-number splitting attack," Phys. Rev. A 71,042305 (2005).
    [CrossRef]
  18. E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73,012344 (2006).
    [CrossRef]
  19. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30,1725-1727 (2005).
    [CrossRef] [PubMed]
  20. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
    [CrossRef]
  21. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer and Y. Yamamoto, "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14,9522-9530 (2006).
    [CrossRef] [PubMed]

2006 (3)

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73,012344 (2006).
[CrossRef]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer and Y. Yamamoto, "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14,9522-9530 (2006).
[CrossRef] [PubMed]

2005 (6)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30,1725-1727 (2005).
[CrossRef] [PubMed]

H.-K. Lo, X. Ma and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005).
[CrossRef] [PubMed]

X.-B. Wang, "Beating the Photon-number-splitting attack in practical Quantum Cryptography," Phys. Rev. Lett. 94,230503 (2005).
[CrossRef] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quanum key distribution against photon-number splitting attack," Phys. Rev. A 71,042305 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
[CrossRef]

2004 (3)

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84,3762-3764 (2004).
[CrossRef]

T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29,2797-2799 (2004).
[CrossRef] [PubMed]

C. Gobby, Z. L. Yuan and A. J. Shields, "Unconditionally secure quantum key distribution over 50 km of standard telecom fibre," Electron. Lett. 40,1603-1605 (2004).
[CrossRef]

2003 (1)

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quanum key distribution using coherent light," Phys. Rev. A 68,022317 (2003).
[CrossRef]

2002 (2)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quanum key distribution," Phys. Rev. Lett. 89,037902 (2002).
[CrossRef] [PubMed]

2000 (2)

N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61,052304 (2000).
[CrossRef]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
[CrossRef]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
[CrossRef]

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
[CrossRef]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000).
[CrossRef] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
[CrossRef]

Chen, K.

H.-K. Lo, X. Ma and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005).
[CrossRef] [PubMed]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Diamanti, E.

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer and Y. Yamamoto, "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14,9522-9530 (2006).
[CrossRef] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30,1725-1727 (2005).
[CrossRef] [PubMed]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
[CrossRef]

Fejer, M. M.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002).
[CrossRef]

Gobby, C.

C. Gobby, Z. L. Yuan and A. J. Shields, "Unconditionally secure quantum key distribution over 50 km of standard telecom fibre," Electron. Lett. 40,1603-1605 (2004).
[CrossRef]

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84,3762-3764 (2004).
[CrossRef]

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quanum key distribution against photon-number splitting attack," Phys. Rev. A 71,042305 (2005).
[CrossRef]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
[CrossRef]

T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29,2797-2799 (2004).
[CrossRef] [PubMed]

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
[CrossRef]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quanum key distribution against photon-number splitting attack," Phys. Rev. A 71,042305 (2005).
[CrossRef]

T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29,2797-2799 (2004).
[CrossRef] [PubMed]

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quanum key distribution using coherent light," Phys. Rev. A 68,022317 (2003).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quanum key distribution," Phys. Rev. Lett. 89,037902 (2002).
[CrossRef] [PubMed]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Langrock, C.

Lo, H.-K.

H.-K. Lo, X. Ma and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005).
[CrossRef] [PubMed]

Lütkenhaus, N.

N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61,052304 (2000).
[CrossRef]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000).
[CrossRef] [PubMed]

Ma, X.

H.-K. Lo, X. Ma and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005).
[CrossRef] [PubMed]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000).
[CrossRef] [PubMed]

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002).
[CrossRef]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Roussev, R. V.

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
[CrossRef]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000).
[CrossRef] [PubMed]

Shields, A. J.

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84,3762-3764 (2004).
[CrossRef]

C. Gobby, Z. L. Yuan and A. J. Shields, "Unconditionally secure quantum key distribution over 50 km of standard telecom fibre," Electron. Lett. 40,1603-1605 (2004).
[CrossRef]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
[CrossRef]

Takahashi, H.

Takesue, H.

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73,012344 (2006).
[CrossRef]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer and Y. Yamamoto, "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14,9522-9530 (2006).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30,1725-1727 (2005).
[CrossRef] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
[CrossRef]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002).
[CrossRef]

Waks, E.

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73,012344 (2006).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quanum key distribution using coherent light," Phys. Rev. A 68,022317 (2003).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quanum key distribution," Phys. Rev. Lett. 89,037902 (2002).
[CrossRef] [PubMed]

Wang, X.-B.

X.-B. Wang, "Beating the Photon-number-splitting attack in practical Quantum Cryptography," Phys. Rev. Lett. 94,230503 (2005).
[CrossRef] [PubMed]

Yamamoto, Y.

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73,012344 (2006).
[CrossRef]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer and Y. Yamamoto, "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14,9522-9530 (2006).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30,1725-1727 (2005).
[CrossRef] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quanum key distribution using coherent light," Phys. Rev. A 68,022317 (2003).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quanum key distribution," Phys. Rev. Lett. 89,037902 (2002).
[CrossRef] [PubMed]

Yuan, Z. L.

C. Gobby, Z. L. Yuan and A. J. Shields, "Unconditionally secure quantum key distribution over 50 km of standard telecom fibre," Electron. Lett. 40,1603-1605 (2004).
[CrossRef]

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84,3762-3764 (2004).
[CrossRef]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002).
[CrossRef]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84,3762-3764 (2004).
[CrossRef]

Electron. Lett. (1)

C. Gobby, Z. L. Yuan and A. J. Shields, "Unconditionally secure quantum key distribution over 50 km of standard telecom fibre," Electron. Lett. 40,1603-1605 (2004).
[CrossRef]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992).
[CrossRef]

New J. Phys. (2)

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005).
[CrossRef]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (5)

N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61,052304 (2000).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quanum key distribution using coherent light," Phys. Rev. A 68,022317 (2003).
[CrossRef]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quanum key distribution against photon-number splitting attack," Phys. Rev. A 71,042305 (2005).
[CrossRef]

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73,012344 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

H.-K. Lo, X. Ma and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005).
[CrossRef] [PubMed]

X.-B. Wang, "Beating the Photon-number-splitting attack in practical Quantum Cryptography," Phys. Rev. Lett. 94,230503 (2005).
[CrossRef] [PubMed]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quanum key distribution," Phys. Rev. Lett. 89,037902 (2002).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002).
[CrossRef]

Other (3)

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita and S. W. Nam, "Long distance decoy state quantum key distribution in optical fiber," quant-ph/0607186 (2006).

C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175-179.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian, "Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber," Proc. IEEE Int. Symp. Inf. Theor. 2006, 2094-2098.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Quantum key distribution system for the implementation of the DPS-QKD protocol. ATT, attenuator; PM, phase modulator; BS, beamsplitter; DET, detector.

Fig. 2.
Fig. 2.

Quantum efficiency and dark count rate of the low jitter up-conversion detector as a function of pump power.

Fig. 3.
Fig. 3.

Typical detection signal from the low jitter up-conversion detector when 66 ps pulses are used. This curve corresponds to a count rate of 105 counts/s.

Fig. 4.
Fig. 4.

Experimental setup for the 1 GHz DPS-QKD system. PC, polarization controller; IM, intensity modulator; PM, phase modulator; VATT, variable attenuator; PPG, pulse pattern generator; DG, data generator.

Fig. 5.
Fig. 5.

Secure and sifted key generation rate as a function of fiber length for two cases. (a) The dashed and solid curves are theoretical predictions for the sifted and secure rate, respectively, when η=6% and d=1.95×10-5. The clear diamond and square are the experimental fiber transmission data for the sifted and secure key generation rate under these conditions. The clear stars and circles are the data taken with attenuation used to simulate additional fiber loss. (b) The dashed and solid curves are the theoretically predicted sifted and secure rate, when η=0.4% and d=3.5×10-8. The filled diamonds and squares are the experimental fiber transmission data under these conditions. The filled stars and circles are the simulated attenuation data. A baseline system error rate of 1.5% is assumed in all theoretical calculations.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

p c 0 1 e 2 ( 1 6 e ) 2 2
p c = p c 0 n = [ 1 e 2 ( 1 6 e ) 2 2 ] n [ 1 2 μ ( 1 T ) ]
τ = log 2 p c n = [ 1 2 μ ( 1 T ) ] log 2 [ 1 e 2 ( 1 6 e ) 2 2 ]
R secure = R sifted { τ + f ( e ) [ e log 2 e + ( 1 e ) log 2 ( 1 e ) ] }
= R sifted { [ 1 2 μ ( 1 T ) ] log 2 [ 1 e 2 ( 1 6 e ) 2 2 ]
+ f ( e ) [ e log 2 e + ( 1 e ) log 2 ( 1 e ) ] }
R sifted = ν μ T e ν μ T t d 2

Metrics