Abstract

We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

© 2006 Optical Society of America

PDF Article
OSA Recommended Articles
Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system

Robert J. Collins, Ryan Amiri, Mikio Fujiwara, Toshimori Honjo, Kaoru Shimizu, Kiyoshi Tamaki, Masahiro Takeoka, Erika Andersson, Gerald S. Buller, and Masahide Sasaki
Opt. Lett. 41(21) 4883-4886 (2016)

Differential-phase-shift quantum secret sharing

K. Inoue, T. Ohashi, T. Kukita, K. Watanabe, S. Hayashi, T. Honjo, and H. Takesue
Opt. Express 16(20) 15469-15476 (2008)

High-speed free-space quantum key distribution system for urban daylight applications

M. J. García-Martínez, N. Denisenko, D. Soto, D. Arroyo, A. B. Orue, and V. Fernandez
Appl. Opt. 52(14) 3311-3317 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
    [Crossref]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  3. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
    [Crossref] [PubMed]
  4. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
    [Crossref]
  5. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
    [Crossref]
  6. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).
  7. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.
  8. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
    [Crossref]
  9. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [Crossref] [PubMed]
  10. C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
    [Crossref]
  11. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.
  12. H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref] [PubMed]
  13. X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref] [PubMed]
  14. K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
    [Crossref] [PubMed]
  15. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
    [Crossref]
  16. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
    [Crossref]
  17. K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
    [Crossref]
  18. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
    [Crossref]
  19. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  20. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [Crossref]
  21. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
    [Crossref] [PubMed]

2006 (3)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

2005 (6)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

2004 (3)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[Crossref] [PubMed]

2003 (1)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

2002 (2)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

2000 (2)

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.

Chen, K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Diamanti, E.

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

Fejer, M. M.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

Harrington, J. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Hiskett, P. A.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[Crossref] [PubMed]

Hughes, R. J.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[Crossref] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Langrock, C.

Lita, A. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Lo, H.-K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Lütkenhaus, N.

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Ma, X.

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Nam, S. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Nordholt, J. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Peterson, C. G.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Qi, B.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Qian, L.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rice, P. R.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Rosenberg, D.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Roussev, R. V.

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Shields, A. J.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Takahashi, H.

Takesue, H.

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Waks, E.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Wang, X.-B.

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

Yamamoto, Y.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Yuan, Z. L.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zhao, Y.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Appl. Phys. Lett. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Electron. Lett. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

New J. Phys. (2)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (5)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

Phys. Rev. Lett. (4)

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (3)

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics