Abstract

We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
    [Crossref]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  3. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
    [Crossref] [PubMed]
  4. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
    [Crossref]
  5. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
    [Crossref]
  6. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).
  7. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.
  8. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
    [Crossref]
  9. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [Crossref] [PubMed]
  10. C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
    [Crossref]
  11. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.
  12. H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref] [PubMed]
  13. X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref] [PubMed]
  14. K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
    [Crossref] [PubMed]
  15. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
    [Crossref]
  16. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
    [Crossref]
  17. K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
    [Crossref]
  18. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
    [Crossref]
  19. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  20. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [Crossref]
  21. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
    [Crossref] [PubMed]

2006 (3)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

2005 (6)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

2004 (3)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[Crossref] [PubMed]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

2003 (1)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

2002 (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

2000 (2)

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.

Chen, K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Diamanti, E.

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

Fejer, M. M.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

Harrington, J. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Hiskett, P. A.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[Crossref] [PubMed]

Hughes, R. J.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[Crossref] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Langrock, C.

Lita, A. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Lo, H.-K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Lütkenhaus, N.

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Ma, X.

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Nam, S. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Nordholt, J. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Peterson, C. G.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Qi, B.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Qian, L.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rice, P. R.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Rosenberg, D.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

Roussev, R. V.

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Shields, A. J.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

Takahashi, H.

Takesue, H.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Waks, E.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Wang, X.-B.

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

Yamamoto, Y.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “10-GHz clock differential phase shift quantum key distribution experiment,” Opt. Express 14, 9522–9530 (2006).
[Crossref] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Yuan, Z. L.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zhao, Y.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Appl. Phys. Lett. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Electron. Lett. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Unconditionally secure quantum key distribution over 50 km of standard telecom fibre,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[Crossref]

New J. Phys. (2)

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (5)

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quanum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quanum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

Phys. Rev. Lett. (4)

H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quanum Key Distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (3)

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita, and S. W. Nam, “Long distance decoy state quantum key distribution in optical fiber,” quant-ph/0607186 (2006).

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175–179.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” Proc. IEEE Int. Symp. Inf. Theor.2006, 2094–2098.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Quantum key distribution system for the implementation of the DPS-QKD protocol. ATT, attenuator; PM, phase modulator; BS, beamsplitter; DET, detector.

Fig. 2.
Fig. 2.

Quantum efficiency and dark count rate of the low jitter up-conversion detector as a function of pump power.

Fig. 3.
Fig. 3.

Typical detection signal from the low jitter up-conversion detector when 66 ps pulses are used. This curve corresponds to a count rate of 105 counts/s.

Fig. 4.
Fig. 4.

Experimental setup for the 1 GHz DPS-QKD system. PC, polarization controller; IM, intensity modulator; PM, phase modulator; VATT, variable attenuator; PPG, pulse pattern generator; DG, data generator.

Fig. 5.
Fig. 5.

Secure and sifted key generation rate as a function of fiber length for two cases. (a) The dashed and solid curves are theoretical predictions for the sifted and secure rate, respectively, when η=6% and d=1.95×10-5. The clear diamond and square are the experimental fiber transmission data for the sifted and secure key generation rate under these conditions. The clear stars and circles are the data taken with attenuation used to simulate additional fiber loss. (b) The dashed and solid curves are the theoretically predicted sifted and secure rate, when η=0.4% and d=3.5×10-8. The filled diamonds and squares are the experimental fiber transmission data under these conditions. The filled stars and circles are the simulated attenuation data. A baseline system error rate of 1.5% is assumed in all theoretical calculations.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

p c 0 1 e 2 ( 1 6 e ) 2 2
p c = p c 0 n = [ 1 e 2 ( 1 6 e ) 2 2 ] n [ 1 2 μ ( 1 T ) ]
τ = log 2 p c n = [ 1 2 μ ( 1 T ) ] log 2 [ 1 e 2 ( 1 6 e ) 2 2 ]
R secure = R sifted { τ + f ( e ) [ e log 2 e + ( 1 e ) log 2 ( 1 e ) ] }
= R sifted { [ 1 2 μ ( 1 T ) ] log 2 [ 1 e 2 ( 1 6 e ) 2 2 ]
+ f ( e ) [ e log 2 e + ( 1 e ) log 2 ( 1 e ) ] }
R sifted = ν μ T e ν μ T t d 2

Metrics