Abstract

The development of microstructured fibres offers the prospect of improved fibre sensing for low refractive index materials such as liquids and gases. A number of approaches are possible. Here we present a new approach to evanescent field sensing, in which both core and cladding are microstructured. The fibre was fabricated and tested, and simulations and experimental results are shown in the visible region to demonstrate the utility of this approach for sensing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13,5883-5889 (2005).
    [CrossRef] [PubMed]
  3. P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
    [CrossRef]
  4. P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).
  5. C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006)
    [CrossRef] [PubMed]
  6. H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, "Toward photonic crystal fiber based distributed chemosensors," in 17th International Conference on Optical Fibre Sensors M. Voet, R. Willsch, W. Ecke, J. Jones, B. Culshaw, eds., Proc. SPIE 5855, 419-422 (2005).
    [CrossRef]
  7. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  8. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  9. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  10. K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt. Express 13, 8365-8371 (2005).
    [CrossRef] [PubMed]
  11. E. E. Serebryannikov and A. M. Zheltikov, "Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonpertubative numerical analysis," J. Opt. Soc. Am. B 23, 1700-1707 (2006).
    [CrossRef]
  12. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
    [CrossRef]
  13. www.comsol.com.
  14. T.A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessy single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  15. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
    [CrossRef] [PubMed]
  16. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
    [CrossRef]
  17. K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori and J. Riishede, "Coupling Photonic Crystal Fibers," Optical Fiber Communication Conference and Exhibit, 627- 628, OFC 2002.
  18. M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin and D. J. Richardson, "Microstructured fibres for sensing applications," in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE 6005, 78-92 (2005).
  19. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  20. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
    [CrossRef]
  21. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel Fibre," Opt. Express 13, 3890-3895 (2005).
    [CrossRef] [PubMed]
  22. K. Patil, R. Pawar and P. Talap, "Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea," Phys. Chem. Chem. Phys. 2, 4313-4317 (2003).
    [CrossRef]
  23. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
    [CrossRef]
  24. P.G. Lye, M. Boerkamp, A. Ernest and D.W. Lamb, "Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions," J. Phys: Conference Series,  15, 262-269 (2005).
    [CrossRef]
  25. V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67, 6070-6074 (1990).
    [CrossRef]
  26. B. D. Gupta, S. K Khijwania, "Experimental studies on the response of the fiber optic evanescent field absorption sensor," Fiber Integrated Opt. 17,63-73 (1998).
    [CrossRef]

2006 (3)

2005 (5)

K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt. Express 13, 8365-8371 (2005).
[CrossRef] [PubMed]

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel Fibre," Opt. Express 13, 3890-3895 (2005).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13,5883-5889 (2005).
[CrossRef] [PubMed]

P.G. Lye, M. Boerkamp, A. Ernest and D.W. Lamb, "Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions," J. Phys: Conference Series,  15, 262-269 (2005).
[CrossRef]

2004 (3)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

2003 (4)

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
[CrossRef] [PubMed]

K. Patil, R. Pawar and P. Talap, "Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea," Phys. Chem. Chem. Phys. 2, 4313-4317 (2003).
[CrossRef]

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).

2002 (3)

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
[CrossRef]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
[CrossRef]

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

1998 (1)

B. D. Gupta, S. K Khijwania, "Experimental studies on the response of the fiber optic evanescent field absorption sensor," Fiber Integrated Opt. 17,63-73 (1998).
[CrossRef]

1997 (1)

1990 (1)

V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67, 6070-6074 (1990).
[CrossRef]

Argyros, A.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Bang, O.

Barton, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Birks, T. A.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

Birks, T.A.

Bjarklev, A.

Boerkamp, M.

P.G. Lye, M. Boerkamp, A. Ernest and D.W. Lamb, "Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions," J. Phys: Conference Series,  15, 262-269 (2005).
[CrossRef]

Brito Cruz, C. H.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Canning, J.

Cordeiro, C. M. B.

Cox, F. M.

de Matos, C. J.

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

dos Santos, E. M.

Eggleton, B. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
[CrossRef]

Emiliyanov, G.

Ernest, A.

P.G. Lye, M. Boerkamp, A. Ernest and D.W. Lamb, "Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions," J. Phys: Conference Series,  15, 262-269 (2005).
[CrossRef]

Ferreira, D. S.

Fini, J. M.

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Florous, N.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Groothoff, N.

Gupta, B. D.

B. D. Gupta, S. K Khijwania, "Experimental studies on the response of the fiber optic evanescent field absorption sensor," Fiber Integrated Opt. 17,63-73 (1998).
[CrossRef]

Hale, A.

Henry, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Ho, H. L.

Hoiby, P.

Hoo, Y. L.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Jensen, J.

Jin, W.

Kerbage, C.

Khijwania, S. K

B. D. Gupta, S. K Khijwania, "Experimental studies on the response of the fiber optic evanescent field absorption sensor," Fiber Integrated Opt. 17,63-73 (1998).
[CrossRef]

Knight, J. C.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

T.A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessy single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Koshiba, M.

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Lamb, D.W.

P.G. Lye, M. Boerkamp, A. Ernest and D.W. Lamb, "Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions," J. Phys: Conference Series,  15, 262-269 (2005).
[CrossRef]

Large, M. C. J.

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Lye, P.G.

P.G. Lye, M. Boerkamp, A. Ernest and D.W. Lamb, "Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions," J. Phys: Conference Series,  15, 262-269 (2005).
[CrossRef]

Lyytikainen, K.

MacCraith, B. D.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67, 6070-6074 (1990).
[CrossRef]

Mägi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Man, T. P. M.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

Martelli, C.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Murphy, J. A.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67, 6070-6074 (1990).
[CrossRef]

Mutharasan, R.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).

Nampoori, V. P. N.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
[CrossRef]

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Ortigosa-Blanch, A.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

Patil, K.

K. Patil, R. Pawar and P. Talap, "Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea," Phys. Chem. Chem. Phys. 2, 4313-4317 (2003).
[CrossRef]

Pawar, R.

K. Patil, R. Pawar and P. Talap, "Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea," Phys. Chem. Chem. Phys. 2, 4313-4317 (2003).
[CrossRef]

Pedersen, L. H.

Radhakrishnan, P.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
[CrossRef]

Reyes, P.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Ruan, S. C.

Ruddy, V.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67, 6070-6074 (1990).
[CrossRef]

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Russell, P. S.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Serebryannikov, E. E.

Shankar, P. M.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).

Shi, C.

Sivasankara Pillai, V. N.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
[CrossRef]

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Steinvurzel, P.

Suresh Kumar, P.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
[CrossRef]

Talap, P.

K. Patil, R. Pawar and P. Talap, "Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea," Phys. Chem. Chem. Phys. 2, 4313-4317 (2003).
[CrossRef]

Vallabhan, C. P. G.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
[CrossRef]

van Eijkelenborg, M. A.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Wadsworth, W. J.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

Wang, D. N.

Westbrook, P. S.

Wiejata, P. J.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).

Windeler, R. S.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Zagari, J.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Zheltikov, A. M.

Appl. Opt. (1)

Appl. Phys. B (1)

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Fiber Integrated Opt. (1)

B. D. Gupta, S. K Khijwania, "Experimental studies on the response of the fiber optic evanescent field absorption sensor," Fiber Integrated Opt. 17,63-73 (1998).
[CrossRef]

J. Appl. Phys. (1)

V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67, 6070-6074 (1990).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai and P. Radhakrishnan, "A fibre optic evanescent wave sensor used for the detection of trace nitrites in water," J. Opt. A: Pure Appl. Opt. 4, 247-250 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys: Conference Series (1)

P.G. Lye, M. Boerkamp, A. Ernest and D.W. Lamb, "Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions," J. Phys: Conference Series,  15, 262-269 (2005).
[CrossRef]

Meas. Sci. Technol. (2)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. (1)

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man & P. S. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B-Opt.Phys. 19, 2148-2155 (2002).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

K. Patil, R. Pawar and P. Talap, "Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea," Phys. Chem. Chem. Phys. 2, 4313-4317 (2003).
[CrossRef]

Science (1)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sens. Actuators B (1)

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).

Other (4)

K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori and J. Riishede, "Coupling Photonic Crystal Fibers," Optical Fiber Communication Conference and Exhibit, 627- 628, OFC 2002.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin and D. J. Richardson, "Microstructured fibres for sensing applications," in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE 6005, 78-92 (2005).

www.comsol.com.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, "Toward photonic crystal fiber based distributed chemosensors," in 17th International Conference on Optical Fibre Sensors M. Voet, R. Willsch, W. Ecke, J. Jones, B. Culshaw, eds., Proc. SPIE 5855, 419-422 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig.1.
Fig.1.

Polymer (PMMA) microstructured fiber. (a) Fabricated microstructured fiber. White bar indicates 20 µm. (b) Near core power flow, time-average, profile and electric optical field directions (arrows).

Fig. 2.
Fig. 2.

Sensitivity coefficient ‘r(%)’ as a function of wavelength. The marks represent: (▴) fibre with air filled holes (A), ( oe-14-26-13056-i001 ) fibre with water filled holes (B), and (◦) fibre with core holes filled with water and cladding holes filled with air. On the right: white is air, rose is the fibre material (PMMA) and blue is the fluid

Fig. 3.
Fig. 3.

Core diameter D of (a) microstructured core MOF and (b) regular MOF

Fig. 4.
Fig. 4.

Sensitivity coefficient ‘r(%)’ @633nm for a microstructured core MOF [Fig. 3(a)] ( oe-14-26-13056-i002 , oe-14-26-13056-i003 ) and for a regular solid core MOF [Fig. 3(b)] ( oe-14-26-13056-i004 , oe-14-26-13056-i005 ) versus fibre core diameter.

Fig. 5.
Fig. 5.

Coupling Efficiency @ 633nm between a polarized Gaussian optical mode and a fundamental H E 11 x mode propagating in the microstructured fibers. The regular MOF lattice parameters are: (d/Λ) cladding =0.9 and Λ cladding =1 or 6 µm. The microstructured core MOF dimensions are: D=6.4 µm, core hole’s diameter d core =1.75 µm and core pitch Λ core =2.4 µm.

Fig. 6.
Fig. 6.

(a). CCD image of the guided mode. (b). and (c). pictures for both polarizations.

Fig. 7.
Fig. 7.

Optical micrographs of fibre cross section (A – all holes blocked and B – just cladding holes blocked with polymer) and fibre side view (C).

Fig. 8.
Fig. 8.

Absorption coefficient (α) of MeB for several concentrations measured in a 1mm cuvette. Inset shows the linear behavior of ‘α’ versus the dye concentration for the 664 and 612 nm peaks.

Fig. 9.
Fig. 9.

Transmittance signal thought water filled and MeB filled fibre. The inset shows the difference between both plots and the bulk MeB measurement (concentration=3.59 . 10-6).

Fig. 10.
Fig. 10.

Power penetration, at 633 nm, in the water central hole of the manufactured fibre normalized by its value in the interface. Inset: optical mode around central hole with white bar indicating the horizontal axis of the graph.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = Sample Re ( E x H y * E y H x * ) dx dy total Re ( E x H y * E y H x * ) dx dy × 100 .
α molar = f M α M + ( 1 f M ) α D ,
P = P 0 exp ( α d ) ,
Loss ( d B ) = 10 log ( P P 0 ) = 4.34 α d r .

Metrics