Abstract

Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of three popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. W.L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006).
    [CrossRef]
  3. E. N. Economou, “Surface Plasmons in thin Films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  4. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B,  33, 5186–5201 (1986).
    [CrossRef]
  5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  6. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
    [CrossRef]
  7. P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  8. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmonpolariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
    [CrossRef]
  9. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
    [CrossRef]
  10. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
    [CrossRef]
  11. R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, “Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
    [CrossRef]
  12. I. V. Novikov and A.A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
    [CrossRef]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
    [CrossRef]
  15. W.L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. 424, 824–830 (2003).
    [CrossRef]
  16. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  17. R. Zia, M.D. Selker, P.B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2006).
    [CrossRef]
  18. L. Thylén and E. Berglind, “Nanophotonics and negative ε materials”, J. Zheijiang University: Science A 7, 41–44 (2006).
    [CrossRef]
  19. L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,” Nanoletters 5, 2034–2038 (2005).
    [CrossRef]
  20. S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quant. Elec. 38, 257–267 (2006).
    [CrossRef]
  21. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-5-1957.
    [CrossRef] [PubMed]
  22. D. Englund, I. Fushman, and J Vučković, “General Recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-5961.
    [CrossRef] [PubMed]
  23. R.E. Collin, Field theory of Guided Waves (IEEE Press, Piscataway, New Jersey, 1991).
  24. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Longwavelength (λ≈8-11.5 µm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
    [CrossRef]
  25. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13, 4674–4682 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4674.
    [CrossRef] [PubMed]
  26. M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of Surface Plasmons in thin Silver Films”, Phys. Stat. Sol. (b) 91, K61–K64 (1979).
    [CrossRef]
  27. E.D. Palik (Editor), Handbook of Optical Constants of Solids, (Academic Press, Orlando, Florida, 1985).
  28. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys. 6, 1583–1606 (1976).
    [CrossRef]
  29. G. Leveque, C. G. Olson, and D. W. Lynch, “Reflectance spectra and dielectric functions for Ag in the region of interband transitions,” Phys. Rev. B 27, 4654–4660 (1983).
    [CrossRef]
  30. B. Brixner, “Refractive-index interpolation for fused silica,” J. Opt. Soc. Am. 57, 674–676 (1967).
    [CrossRef]
  31. D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. Mod. Opt. 43, 81–91 (1996).
  32. E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett. 31, 1127–1129 (1973 ).
    [CrossRef]

2006 (7)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
[CrossRef]

W.L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

L. Thylén and E. Berglind, “Nanophotonics and negative ε materials”, J. Zheijiang University: Science A 7, 41–44 (2006).
[CrossRef]

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quant. Elec. 38, 257–267 (2006).
[CrossRef]

R. Zia, M.D. Selker, P.B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2006).
[CrossRef]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-5-1957.
[CrossRef] [PubMed]

2005 (5)

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13, 4674–4682 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4674.
[CrossRef] [PubMed]

D. Englund, I. Fushman, and J Vučković, “General Recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-5961.
[CrossRef] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,” Nanoletters 5, 2034–2038 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

2003 (2)

W.L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. 424, 824–830 (2003).
[CrossRef]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, “Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

2002 (1)

I. V. Novikov and A.A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

2001 (2)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

2000 (2)

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmonpolariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[CrossRef]

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

1999 (1)

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

1998 (1)

1996 (1)

D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. Mod. Opt. 43, 81–91 (1996).

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B,  33, 5186–5201 (1986).
[CrossRef]

1983 (1)

G. Leveque, C. G. Olson, and D. W. Lynch, “Reflectance spectra and dielectric functions for Ag in the region of interband transitions,” Phys. Rev. B 27, 4654–4660 (1983).
[CrossRef]

1979 (1)

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of Surface Plasmons in thin Silver Films”, Phys. Stat. Sol. (b) 91, K61–K64 (1979).
[CrossRef]

1976 (1)

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys. 6, 1583–1606 (1976).
[CrossRef]

1973 (1)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett. 31, 1127–1129 (1973 ).
[CrossRef]

1969 (1)

E. N. Economou, “Surface Plasmons in thin Films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

1967 (1)

Arakawa, E. T.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett. 31, 1127–1129 (1973 ).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Aussenegg, F.R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

Barnes, W.L.

W.L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006).
[CrossRef]

W.L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. 424, 824–830 (2003).
[CrossRef]

Berglind, E.

L. Thylén and E. Berglind, “Nanophotonics and negative ε materials”, J. Zheijiang University: Science A 7, 41–44 (2006).
[CrossRef]

Berini, P.

Berolo, E.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
[CrossRef]

Bozhevolnyi, S.I.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, “Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Brixner, B.

Brongersma, M. L.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B,  33, 5186–5201 (1986).
[CrossRef]

Capasso, F.

Catrysse, P.B.

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,” Nanoletters 5, 2034–2038 (2005).
[CrossRef]

Charbonneau, R.

Cho, A. Y.

Collin, R.E.

R.E. Collin, Field theory of Guided Waves (IEEE Press, Piscataway, New Jersey, 1991).

Dereux, A.

W.L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. 424, 824–830 (2003).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
[CrossRef]

W.L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. 424, 824–830 (2003).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface Plasmons in thin Films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Englund, D.

Faist, J.

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of Surface Plasmons in thin Silver Films”, Phys. Stat. Sol. (b) 91, K61–K64 (1979).
[CrossRef]

Fushman, I.

Girard, C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Gmachl, C.

Goudonnet, J. P.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Goudonnet, J.-P.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Hamm, R. N.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett. 31, 1127–1129 (1973 ).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Hutchinson, A. L.

Jetté-Charbonneau, S.

Krenn, J. R.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Lacroute, Y.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Lahoud, N.

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Leitner, A.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

Lengkeek, H. P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys. 6, 1583–1606 (1976).
[CrossRef]

Leosson, K.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, “Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Leveque, G.

G. Leveque, C. G. Olson, and D. W. Lynch, “Reflectance spectra and dielectric functions for Ag in the region of interband transitions,” Phys. Rev. B 27, 4654–4660 (1983).
[CrossRef]

Lisicka-Shrzek, E.

Lynch, D. W.

G. Leveque, C. G. Olson, and D. W. Lynch, “Reflectance spectra and dielectric functions for Ag in the region of interband transitions,” Phys. Rev. B 27, 4654–4660 (1983).
[CrossRef]

Maier, S. A.

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-5-1957.
[CrossRef] [PubMed]

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quant. Elec. 38, 257–267 (2006).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Maradudin, A.A.

I. V. Novikov and A.A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Mattiussi, G.

Nash, D. J.

D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. Mod. Opt. 43, 81–91 (1996).

Nikolajsen, R.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, “Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Normandin, R.

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of Surface Plasmons in thin Silver Films”, Phys. Stat. Sol. (b) 91, K61–K64 (1979).
[CrossRef]

Novikov, I. V.

I. V. Novikov and A.A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Olson, C. G.

G. Leveque, C. G. Olson, and D. W. Lynch, “Reflectance spectra and dielectric functions for Ag in the region of interband transitions,” Phys. Rev. B 27, 4654–4660 (1983).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

Ritchie, R. H.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett. 31, 1127–1129 (1973 ).
[CrossRef]

Salakhutdinov, I.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, “Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

Sambles, J. R.

D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. Mod. Opt. 43, 81–91 (1996).

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,” Nanoletters 5, 2034–2038 (2005).
[CrossRef]

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

Selker, M.D.

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,” Nanoletters 5, 2034–2038 (2005).
[CrossRef]

Sirtori, C.

Sivco, D. L.

So, V. C. Y.

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of Surface Plasmons in thin Silver Films”, Phys. Stat. Sol. (b) 91, K61–K64 (1979).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B,  33, 5186–5201 (1986).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B,  33, 5186–5201 (1986).
[CrossRef]

Thylén, L.

L. Thylén and E. Berglind, “Nanophotonics and negative ε materials”, J. Zheijiang University: Science A 7, 41–44 (2006).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,” Nanoletters 5, 2034–2038 (2005).
[CrossRef]

van Kampen, F. F.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys. 6, 1583–1606 (1976).
[CrossRef]

van Went, C. G.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys. 6, 1583–1606 (1976).
[CrossRef]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
[CrossRef]

Vuckovic, J

Weeber, J.-C.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Williams, M. W.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett. 31, 1127–1129 (1973 ).
[CrossRef]

Winsemius, P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys. 6, 1583–1606 (1976).
[CrossRef]

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

Zia, R.

Appl. Phys. Lett. (3)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.,  7951–53 (2001).
[CrossRef]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, “Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.,  87261114 (2005).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Mod. Opt. (1)

D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. Mod. Opt. 43, 81–91 (1996).

J. Opt. A: Pure Appl. Opt. (1)

W.L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. F: Metal Phys. (1)

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys. 6, 1583–1606 (1976).
[CrossRef]

J. Zheijiang University: Science A (1)

L. Thylén and E. Berglind, “Nanophotonics and negative ε materials”, J. Zheijiang University: Science A 7, 41–44 (2006).
[CrossRef]

Nanoletters (1)

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,” Nanoletters 5, 2034–2038 (2005).
[CrossRef]

Nat. (2)

W.L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. 424, 824–830 (2003).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nat. 440, 508–511 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quant. Elec. (1)

S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quant. Elec. 38, 257–267 (2006).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, “Surface Plasmons in thin Films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B (7)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B,  33, 5186–5201 (1986).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

I. V. Novikov and A.A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

G. Leveque, C. G. Olson, and D. W. Lynch, “Reflectance spectra and dielectric functions for Ag in the region of interband transitions,” Phys. Rev. B 27, 4654–4660 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett. 31, 1127–1129 (1973 ).
[CrossRef]

Phys. Stat. Sol. (b) (1)

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of Surface Plasmons in thin Silver Films”, Phys. Stat. Sol. (b) 91, K61–K64 (1979).
[CrossRef]

Other (3)

E.D. Palik (Editor), Handbook of Optical Constants of Solids, (Academic Press, Orlando, Florida, 1985).

R.E. Collin, Field theory of Guided Waves (IEEE Press, Piscataway, New Jersey, 1991).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

1-D SPP waveguides considered: (a) single-interface, (b) symmetric dielectric-cladded metal slab, and (c) symmetric metal-cladded dielectric slab.

Fig. 2.
Fig. 2.

(a) Relative permittivity of Ag (εr,m =-εR -jεI ) and SiO2 (εr,1 =n12 ) over the range 230≤λ0 ≥2000 nm; the inset zooms-in on the range 230≤λ0 ≤500 nm. (b) Dispersion curve of the single-interface SPP. (c) and (d) neff and keff of modes supported by the structures of Fig. 1, respectively.

Fig. 3.
Fig. 3.

(a) δw , (b) M11D , (c) M2 , (d) M3 , (e) vg , and (f) Q of modes supported by the structures of Fig. 1.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

M 1 1 D = 1 δ w α z
ε r , m < e ε r , 1
E y , m ( y ) = E y , 1 ( 0 ) e α y , m y = ε r , 1 ε r , m E y , 1 ( 0 + ) e α y , m y for y < 0
δ w = { δ D for ε r , m e ε r , 1 δ D + δ m ln ( e ε r , 1 ε r , m ) for ε r , m < e ε r , 1
δ D = 1 Re { β 1 2 γ z 2 }
δ m = 1 Re { β 0 2 ε r , m γ z 2 }
β z β 0 = Re { ε r , 1 ε r , m ε r , 1 + ε r , m } and α z β 0 = Im { ε r , 1 ε r , m ε r , 1 + ε r , m }
M 1 1 D β z 2 β 1 2 α z = n eff 2 n 1 2 k eff
δ w = t + 2 δ D
M 1 1 D 1 α z [ t + 2 β z 2 β 1 2 ] 1 = 1 k eff [ β 0 t + 2 n eff 2 n 1 2 ] 1
M 1 1 D 1 2 β z 2 β 1 2 α z = 1 2 n eff 2 n 1 2 k eff
δ w = { t for ε r , m e ε r , 1 t + 2 δ m ln ( e ε r , 1 ε r , m ) for ε r , m < e ε r , 1
M 1 1 D 1 α z t = 1 k eff β 0 t
M 2 = β z β 1 α z = n eff n 1 k eff
M 3 = 1 λ g α z = 1 2 π β z α z = 1 2 π n eff k eff
Q = ω τ spp
τ spp = 1 v g 2 α z
v g 1 = β z ω = 1 c 0 ( n eff λ 0 n eff λ 0 )
n eff = β z β 0 ( ε r , 1 ε R ε R ε r , 1 ) 1 2 and k eff = α z β 0 = ε I 2 ε R 2 ( ε r , 1 ε R ε R ε r , 1 ) 3 2
M 1 1 D 2 ε r , 1 1 2 ε R 1 2 ε I ( ε R ε r , 1 ) and M 1 1 D 2 ε r , 1 1 2 ε R 3 2 ε I for ε R ε r , 1
ε r , m = ε R j ε I = 1 ω p 2 ω 2 + 1 τ D 2 j ω p 2 τ D ω ( ω 2 + 1 τ D 2 )
M 1 1 D 2 ε r , 1 1 2 ω p τ D
M 2 2 ε R ε I 1 ε r , 1 ( ε R ε r , 1 ( ε R ε r , 1 ) 3 ε R ) and M 2 ε R ε I for ε R ε r , 1
M 2 ω τ D = 2 π c 0 τ D λ 0
M 3 1 π ε r , 1 ε R ε I ( ε R ε r , 1 ) and M 3 1 π ε r , 1 ε R 2 ε I for ε R ε r , 1
M 3 1 π ε r , 1 ω p 2 τ D ω = 1 π ε r , 1 ω p 2 τ D λ 0 ( 2 π c 0 )

Metrics