Abstract

We report on the use of dielectric coatings to improve the contrast of longitudinal magneto-optic Kerr effect signals from submicron magnetic structures. Electron-beam lithography was used to define disks in 22 nm thick Ni films deposited on Si substrates. The structures were measured in four configurations: as-deposited, through a fused silica prism using index-matching fluid, coated with ZnS, and using a prism on top of the ZnS layer. The modified samples show up to 20 times improvement in the MOKE contrast due to admittance matching to the magnetic material and suppression of the substrate reflectance. The behavior is successfully predicted by a model that includes the magneto-optic response of the nickel layer and accounts for the fraction of the beam intercepted by the magnetic structure.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, "Programmable computing with a single magnetoresistive element," Nature. 425,485-487 (2003).
    [CrossRef] [PubMed]
  2. D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
    [CrossRef]
  3. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
    [CrossRef] [PubMed]
  4. A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
    [CrossRef] [PubMed]
  5. A.-V. Jausovec, G. Xiong, and R. P. Cowburn, "Stability of magnetization states in submicron Permalloy disks," J. Appl. Phys. 99, 08B103-1-3 (2006).
    [CrossRef]
  6. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
    [CrossRef] [PubMed]
  7. S. U. Jen and K. C. Chen, "Enhancement of polar Kerr effect by forming Au nanoparticles on Ni surface," J. Appl. Phys. 97, 10M311-1-3 (2005).
    [CrossRef]
  8. M. Klaui, C. A. F. Vaz, J. A. C. Bland, and L. J. Heyderman, "Domain wall coupling and collective switching in interacting mesoscopic ring magnet arrays," Appl. Phys. Lett. 86, 032504-1-3 (2005).
    [CrossRef]
  9. P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
    [CrossRef]
  10. R. Atkinson, I. W. Salter, and J. Xu, "Quadrilayer magneto-optic enhancement with Zero Kerr Ellipticity," J. Magn. Magn. Mater 102, 357-364 (1991).
    [CrossRef]
  11. K. Balasubramanian, A. S. Marathay, and H. A. Macleod, "Modeling magneto-optical thin-film media for optical-data storage," Thin Solid Films. 164, 391-403 (1988).
    [CrossRef]
  12. M. Mansuripur, G.A.N. Connell, and J. W. Goodman, "Signal and Noise in Magneto-Optical Readout," J. Appl. Phys. 53, 4485-4494 (1982).
    [CrossRef]
  13. N. Qureshi, H. Schmidt, and A. R. Hawkins, "Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures," Appl. Phys. Lett. 85, 431-433 (2004).
    [CrossRef]
  14. N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
    [CrossRef] [PubMed]
  15. D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, "Magneto-optical Kerr effect analysis of magnetic nanostructures," J. Phys. D-Appl. Phys. 36, 2175-2182 (2003).
    [CrossRef]
  16. P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, "Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements," J. Appl. Phys. 100, 093910 (2006).
    [CrossRef]
  17. I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A-Pure and Appl. Opt. 1, 646-653 (1999).
    [CrossRef]
  18. I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A-Pure and Appl. Opt. 2, 557-564 (2000).
    [CrossRef]
  19. M. Mansuripur, "Analysis of multilayer thin-film structures containing magneto optic and anisotropic media at oblique-incidence using 2X2 matrices," J. Appl. Phys. 67, 6466-6475 (1990).
    [CrossRef]
  20. S. Visnovsky, K. Postava, and T. Yamaguchi, "Magneto-optic polar Kerr and Faraday effects in periodic multilayers," Opt. Express. 9, 158-171 (2001).
    [CrossRef] [PubMed]
  21. S. Višňovský, "Magneto-optical ellipsometry," Czech. J. Phys. B36, 625-650 (1986).
    [CrossRef]

2006

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, "Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements," J. Appl. Phys. 100, 093910 (2006).
[CrossRef]

2005

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

2004

N. Qureshi, H. Schmidt, and A. R. Hawkins, "Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures," Appl. Phys. Lett. 85, 431-433 (2004).
[CrossRef]

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

2003

A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, "Programmable computing with a single magnetoresistive element," Nature. 425,485-487 (2003).
[CrossRef] [PubMed]

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, "Magneto-optical Kerr effect analysis of magnetic nanostructures," J. Phys. D-Appl. Phys. 36, 2175-2182 (2003).
[CrossRef]

2001

S. Visnovsky, K. Postava, and T. Yamaguchi, "Magneto-optic polar Kerr and Faraday effects in periodic multilayers," Opt. Express. 9, 158-171 (2001).
[CrossRef] [PubMed]

2000

I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A-Pure and Appl. Opt. 2, 557-564 (2000).
[CrossRef]

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
[CrossRef] [PubMed]

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

1999

I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A-Pure and Appl. Opt. 1, 646-653 (1999).
[CrossRef]

1991

R. Atkinson, I. W. Salter, and J. Xu, "Quadrilayer magneto-optic enhancement with Zero Kerr Ellipticity," J. Magn. Magn. Mater 102, 357-364 (1991).
[CrossRef]

1990

M. Mansuripur, "Analysis of multilayer thin-film structures containing magneto optic and anisotropic media at oblique-incidence using 2X2 matrices," J. Appl. Phys. 67, 6466-6475 (1990).
[CrossRef]

1988

K. Balasubramanian, A. S. Marathay, and H. A. Macleod, "Modeling magneto-optical thin-film media for optical-data storage," Thin Solid Films. 164, 391-403 (1988).
[CrossRef]

1986

S. Višňovský, "Magneto-optical ellipsometry," Czech. J. Phys. B36, 625-650 (1986).
[CrossRef]

1982

M. Mansuripur, G.A.N. Connell, and J. W. Goodman, "Signal and Noise in Magneto-Optical Readout," J. Appl. Phys. 53, 4485-4494 (1982).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A-Pure and Appl. Opt. 2, 557-564 (2000).
[CrossRef]

I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A-Pure and Appl. Opt. 1, 646-653 (1999).
[CrossRef]

Allwood, D. A.

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, "Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements," J. Appl. Phys. 100, 093910 (2006).
[CrossRef]

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, "Magneto-optical Kerr effect analysis of magnetic nanostructures," J. Phys. D-Appl. Phys. 36, 2175-2182 (2003).
[CrossRef]

Allwood, D.A.

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

Atkinson, D.

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

Atkinson, R.

R. Atkinson, I. W. Salter, and J. Xu, "Quadrilayer magneto-optic enhancement with Zero Kerr Ellipticity," J. Magn. Magn. Mater 102, 357-364 (1991).
[CrossRef]

Balasubramanian, K.

K. Balasubramanian, A. S. Marathay, and H. A. Macleod, "Modeling magneto-optical thin-film media for optical-data storage," Thin Solid Films. 164, 391-403 (1988).
[CrossRef]

Bernstein, G. H.

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

Bokor, J.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

Cantwell, P. R.

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, "Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements," J. Appl. Phys. 100, 093910 (2006).
[CrossRef]

Connell, G.A.N.

M. Mansuripur, G.A.N. Connell, and J. W. Goodman, "Signal and Noise in Magneto-Optical Readout," J. Appl. Phys. 53, 4485-4494 (1982).
[CrossRef]

Cooke, M. D.

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, "Magneto-optical Kerr effect analysis of magnetic nanostructures," J. Phys. D-Appl. Phys. 36, 2175-2182 (2003).
[CrossRef]

Cowburn, R. P.

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, "Magneto-optical Kerr effect analysis of magnetic nanostructures," J. Phys. D-Appl. Phys. 36, 2175-2182 (2003).
[CrossRef]

Csaba, G.

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

Faulkner, C. C.

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

Gibson, U. J.

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, "Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements," J. Appl. Phys. 100, 093910 (2006).
[CrossRef]

Goodman, J. W.

M. Mansuripur, G.A.N. Connell, and J. W. Goodman, "Signal and Noise in Magneto-Optical Readout," J. Appl. Phys. 53, 4485-4494 (1982).
[CrossRef]

Grimsditch, M.

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

Hassdorf, R.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
[CrossRef] [PubMed]

Hawkins, A. R.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

N. Qureshi, H. Schmidt, and A. R. Hawkins, "Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures," Appl. Phys. Lett. 85, 431-433 (2004).
[CrossRef]

Ilic, B.

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

Imre, A.

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

Ji, L.

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

Koch, R.

A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, "Programmable computing with a single magnetoresistive element," Nature. 425,485-487 (2003).
[CrossRef] [PubMed]

Kumar, R.

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

Kwon, S.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

Liddle, A.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

Lowther, M. A.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

Macleod, H. A.

K. Balasubramanian, A. S. Marathay, and H. A. Macleod, "Modeling magneto-optical thin-film media for optical-data storage," Thin Solid Films. 164, 391-403 (1988).
[CrossRef]

Macleod, H. A. M.

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, "Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements," J. Appl. Phys. 100, 093910 (2006).
[CrossRef]

Mansuripur, M.

M. Mansuripur, "Analysis of multilayer thin-film structures containing magneto optic and anisotropic media at oblique-incidence using 2X2 matrices," J. Appl. Phys. 67, 6466-6475 (1990).
[CrossRef]

M. Mansuripur, G.A.N. Connell, and J. W. Goodman, "Signal and Noise in Magneto-Optical Readout," J. Appl. Phys. 53, 4485-4494 (1982).
[CrossRef]

Marathay, A. S.

K. Balasubramanian, A. S. Marathay, and H. A. Macleod, "Modeling magneto-optical thin-film media for optical-data storage," Thin Solid Films. 164, 391-403 (1988).
[CrossRef]

Metlushko, V.

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

Neuzil, P.

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

Ney, A.

A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, "Programmable computing with a single magnetoresistive element," Nature. 425,485-487 (2003).
[CrossRef] [PubMed]

Okuno, T.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
[CrossRef] [PubMed]

Ono, T.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
[CrossRef] [PubMed]

Orlov, A.

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

Pampuch, C.

A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, "Programmable computing with a single magnetoresistive element," Nature. 425,485-487 (2003).
[CrossRef] [PubMed]

Petit, D.

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

Ploog, K. H.

A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, "Programmable computing with a single magnetoresistive element," Nature. 425,485-487 (2003).
[CrossRef] [PubMed]

Porod, W.

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

Postava, K.

S. Visnovsky, K. Postava, and T. Yamaguchi, "Magneto-optic polar Kerr and Faraday effects in periodic multilayers," Opt. Express. 9, 158-171 (2001).
[CrossRef] [PubMed]

Qureshi, N.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

N. Qureshi, H. Schmidt, and A. R. Hawkins, "Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures," Appl. Phys. Lett. 85, 431-433 (2004).
[CrossRef]

Salter, I. W.

R. Atkinson, I. W. Salter, and J. Xu, "Quadrilayer magneto-optic enhancement with Zero Kerr Ellipticity," J. Magn. Magn. Mater 102, 357-364 (1991).
[CrossRef]

Schmidt, H.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

N. Qureshi, H. Schmidt, and A. R. Hawkins, "Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures," Appl. Phys. Lett. 85, 431-433 (2004).
[CrossRef]

Shigeto, K.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
[CrossRef] [PubMed]

Shinjo, T.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
[CrossRef] [PubMed]

Vavassori, P.

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

Visnovsky, S.

S. Visnovsky, K. Postava, and T. Yamaguchi, "Magneto-optic polar Kerr and Faraday effects in periodic multilayers," Opt. Express. 9, 158-171 (2001).
[CrossRef] [PubMed]

Višnovský, S.

S. Višňovský, "Magneto-optical ellipsometry," Czech. J. Phys. B36, 625-650 (1986).
[CrossRef]

Wang, S.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

Xiong, G.

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, "Magneto-optical Kerr effect analysis of magnetic nanostructures," J. Phys. D-Appl. Phys. 36, 2175-2182 (2003).
[CrossRef]

Xu, J.

R. Atkinson, I. W. Salter, and J. Xu, "Quadrilayer magneto-optic enhancement with Zero Kerr Ellipticity," J. Magn. Magn. Mater 102, 357-364 (1991).
[CrossRef]

Yamaguchi, T.

S. Visnovsky, K. Postava, and T. Yamaguchi, "Magneto-optic polar Kerr and Faraday effects in periodic multilayers," Opt. Express. 9, 158-171 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett.

N. Qureshi, H. Schmidt, and A. R. Hawkins, "Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures," Appl. Phys. Lett. 85, 431-433 (2004).
[CrossRef]

Czech. J. Phys.

S. Višňovský, "Magneto-optical ellipsometry," Czech. J. Phys. B36, 625-650 (1986).
[CrossRef]

J. Appl. Phys.

M. Mansuripur, "Analysis of multilayer thin-film structures containing magneto optic and anisotropic media at oblique-incidence using 2X2 matrices," J. Appl. Phys. 67, 6466-6475 (1990).
[CrossRef]

M. Mansuripur, G.A.N. Connell, and J. W. Goodman, "Signal and Noise in Magneto-Optical Readout," J. Appl. Phys. 53, 4485-4494 (1982).
[CrossRef]

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, "Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements," J. Appl. Phys. 100, 093910 (2006).
[CrossRef]

D.A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, and R. P. Cowburn, "Characterization of submicrometer ferromagnetic NOT gates," J. Appl. Phys. 95, 8264-8270 (2004).
[CrossRef]

J. Magn. Magn. Mater

R. Atkinson, I. W. Salter, and J. Xu, "Quadrilayer magneto-optic enhancement with Zero Kerr Ellipticity," J. Magn. Magn. Mater 102, 357-364 (1991).
[CrossRef]

J. Opt. A-Pure and Appl. Opt.

I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A-Pure and Appl. Opt. 1, 646-653 (1999).
[CrossRef]

I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A-Pure and Appl. Opt. 2, 557-564 (2000).
[CrossRef]

J. Phys. D-Appl. Phys.

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, "Magneto-optical Kerr effect analysis of magnetic nanostructures," J. Phys. D-Appl. Phys. 36, 2175-2182 (2003).
[CrossRef]

Nano Lett.

N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, "Cavity-enhanced magneto optical observation of magnetization reversal in individual single-domain nanomagnets," Nano Lett. 5, 1413-1417 (2005).
[CrossRef] [PubMed]

Nature.

A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, "Programmable computing with a single magnetoresistive element," Nature. 425,485-487 (2003).
[CrossRef] [PubMed]

Opt. Express.

S. Visnovsky, K. Postava, and T. Yamaguchi, "Magneto-optic polar Kerr and Faraday effects in periodic multilayers," Opt. Express. 9, 158-171 (2001).
[CrossRef] [PubMed]

Phys. Rev. B.

P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, and R. Kumar, "Magneto-optical studies of superlattice dot arrays," Phys. Rev. B. 61, 5895-5898 (2000).
[CrossRef]

Science.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, "Magnetic vortex core observation in circular dots of permalloy," Science. 289, 930-932 (2000).
[CrossRef] [PubMed]

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science. 309, 1688-1692 (2005).
[CrossRef] [PubMed]

A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, "Majority logic gate for magnetic quantum-dot cellular automata," Science. 311, 205-208 (2006).
[CrossRef] [PubMed]

Thin Solid Films.

K. Balasubramanian, A. S. Marathay, and H. A. Macleod, "Modeling magneto-optical thin-film media for optical-data storage," Thin Solid Films. 164, 391-403 (1988).
[CrossRef]

Other

A.-V. Jausovec, G. Xiong, and R. P. Cowburn, "Stability of magnetization states in submicron Permalloy disks," J. Appl. Phys. 99, 08B103-1-3 (2006).
[CrossRef]

S. U. Jen and K. C. Chen, "Enhancement of polar Kerr effect by forming Au nanoparticles on Ni surface," J. Appl. Phys. 97, 10M311-1-3 (2005).
[CrossRef]

M. Klaui, C. A. F. Vaz, J. A. C. Bland, and L. J. Heyderman, "Domain wall coupling and collective switching in interacting mesoscopic ring magnet arrays," Appl. Phys. Lett. 86, 032504-1-3 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electric field components in MOKE magnetometry; Eps is enlarged for clarity. θk . is the Kerr angle, and ϕ is the analyzer angle

Fig. 2
Fig. 2

Scanning Electron Micrograph (SEM) of the Ni nanomagnets and fiducial marks. The triangles and squares were used to align the measurement beam.

Fig. 3.
Fig. 3.

Simplified diagram of MOKE measurement system. Inset shows the mounting of the quartz prism.

Fig. 4
Fig. 4

Model and experimental values of the Kerr contrast for Ni film on silicon. Magenta (◊) - bare; black (▫) - prism covered, red (∆) - ZnS coated and blue (O), ZnS coated and prism covered. γ=8×10-5 without, and 6×10-5 with the prism.

Fig. 5.
Fig. 5.

Predicted Kerr contrast for Ni disks on Si with ZnS coatings as a function of analyzer angle and coating thickness for a) 10%, and b) 0.5 % of the beam intercepted by the Ni.; γ=0.9×10-4 was used for both calculations. The dielectric tensor elements used were (εxx =εyy =εzz =5.52 for ZnS, 15.3+0.08i for Si -13.2+16.5i, 3.91+.01i for Ni, with εxy =0.24-0.02i).

Fig. 6.
Fig. 6.

Modeled Kerr contrast for a Ni disk on Si, intercepting 0.04 of the spot intensity. The solid curves are for γ=0.9×10-4, and the dotted curves are for γ=0.25×10-4. The blue curves are for an overcoat of 55nm of ZnS, and the red curves are bare Ni on Si.

Fig. 7
Fig. 7

Experimental and modeling results for (left) 2 micron and (right) 400 nm disks. Magenta (◊) — bare disk, black (▫) — prism covered, red (∆) — ZnS coated, and blue (O) — ZnS coated and prism covered.6.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I + = ( E pp sin ( ϕ ) + E ps cos ( ϕ ) ) 2 = E pp 2 sin 2 ( ϕ ) + 2 E pp E ps sin ( ϕ ) cos ( ϕ ) + E ps 2 cos 2 ( ϕ )
dI I avg = 4 E ps E pp cos ( ϕ ) sin ( ϕ ) E ps 2 cos 2 ( ϕ ) + E pp 2 sin 2 ( ϕ ) + γ

Metrics