Abstract

The spatial distribution of the second-order nonlinearity induced in thermally poled Infrasil silica samples is recorded after thermal annealing experiments. Two regimes have been studied: short and long poling durations. For short poling durations, the observations are in good agreement with a model where only one ion type recombines inside the depletion region. The nonlinear distribution and erasure observed for the other case are well explained by considering the addition of another positive-charged ion injected during the poling process. This second ion acts as a barrier during thermal annealing and reduces the mobility of the first one.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S.R.J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
    [CrossRef]
  3. A. Le Calvez, E. Freysz, and A. Ducasse, “A model for second harmonic generation in poled glasses,” Eur. Phys. J. D 1, 223–226 (1998).
    [CrossRef]
  4. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Comm. 110, 611–614 (1994).
    [CrossRef]
  5. A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Time evolution of second-order nonlinear profiles induced within thermally poled silica samples,” Opt. Lett. 30, 1039–1041 (2005).
    [CrossRef] [PubMed]
  6. A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express 13, 8015–8024 (2005) , http://www.opticsexpress.org/abstract.cfm?id=85753
    [CrossRef] [PubMed]
  7. D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
    [CrossRef]
  8. N. Mukherjee, R.A. Myers, and S.R.J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994).
    [CrossRef]
  9. O. Deparis, C. Corbari, and P. G. Kazansky, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84, 4857–4859 (2004).
    [CrossRef]
  10. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
    [CrossRef]
  11. W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21, 1786–1788 (1996).
    [CrossRef] [PubMed]
  12. Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer”, J. Opt. Soc. Am. B 22, 598–604 (2005).
    [CrossRef]
  13. A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
    [CrossRef]
  14. M. Tomozawa and D.W. Shin, “Charge carrier concentration and mobility of ions in a silica glass,” J. Non-Cryst. Solids 241, 140–148 (1998).
    [CrossRef]
  15. Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity”, Phys. Rev. A 65, 043816 (2002).
    [CrossRef]

2005 (3)

2004 (1)

O. Deparis, C. Corbari, and P. G. Kazansky, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84, 4857–4859 (2004).
[CrossRef]

2003 (2)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

2002 (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity”, Phys. Rev. A 65, 043816 (2002).
[CrossRef]

2001 (1)

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

1998 (3)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

A. Le Calvez, E. Freysz, and A. Ducasse, “A model for second harmonic generation in poled glasses,” Eur. Phys. J. D 1, 223–226 (1998).
[CrossRef]

M. Tomozawa and D.W. Shin, “Charge carrier concentration and mobility of ions in a silica glass,” J. Non-Cryst. Solids 241, 140–148 (1998).
[CrossRef]

1996 (1)

1994 (2)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Comm. 110, 611–614 (1994).
[CrossRef]

N. Mukherjee, R.A. Myers, and S.R.J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994).
[CrossRef]

1991 (1)

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

Brueck, S.R.J.

Carvalho, H. R.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Carvalho, I. C. S.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Corbari, C.

O. Deparis, C. Corbari, and P. G. Kazansky, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84, 4857–4859 (2004).
[CrossRef]

Deparis, O.

O. Deparis, C. Corbari, and P. G. Kazansky, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84, 4857–4859 (2004).
[CrossRef]

Ducasse, A.

A. Le Calvez, E. Freysz, and A. Ducasse, “A model for second harmonic generation in poled glasses,” Eur. Phys. J. D 1, 223–226 (1998).
[CrossRef]

Faccio, D.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

Fischer, R.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Freysz, E.

A. Le Calvez, E. Freysz, and A. Ducasse, “A model for second harmonic generation in poled glasses,” Eur. Phys. J. D 1, 223–226 (1998).
[CrossRef]

Godbout, N.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity”, Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Kazansky, P. G.

O. Deparis, C. Corbari, and P. G. Kazansky, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84, 4857–4859 (2004).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Comm. 110, 611–614 (1994).
[CrossRef]

Kudlinski, A.

Lacroix, S.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity”, Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Laurell, F.

Le Calvez, A.

A. Le Calvez, E. Freysz, and A. Ducasse, “A model for second harmonic generation in poled glasses,” Eur. Phys. J. D 1, 223–226 (1998).
[CrossRef]

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Lesche, B.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Margulis, W.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21, 1786–1788 (1996).
[CrossRef] [PubMed]

Martinelli, G.

Moreira, M. F.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Mukherjee, N.

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S.R.J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

Myers, R.A.

Pruneri, V.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

Quiquempois, Y.

A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Time evolution of second-order nonlinear profiles induced within thermally poled silica samples,” Opt. Lett. 30, 1039–1041 (2005).
[CrossRef] [PubMed]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express 13, 8015–8024 (2005) , http://www.opticsexpress.org/abstract.cfm?id=85753
[CrossRef] [PubMed]

Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer”, J. Opt. Soc. Am. B 22, 598–604 (2005).
[CrossRef]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity”, Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Comm. 110, 611–614 (1994).
[CrossRef]

Shin, D.W.

M. Tomozawa and D.W. Shin, “Charge carrier concentration and mobility of ions in a silica glass,” J. Non-Cryst. Solids 241, 140–148 (1998).
[CrossRef]

Tomozawa, M.

M. Tomozawa and D.W. Shin, “Charge carrier concentration and mobility of ions in a silica glass,” J. Non-Cryst. Solids 241, 140–148 (1998).
[CrossRef]

Triques, A. L. C.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Zeghlache, H.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

O. Deparis, C. Corbari, and P. G. Kazansky, “Enhanced stability of the second-order optical nonlinearity in poled glasses,” Appl. Phys. Lett. 84, 4857–4859 (2004).
[CrossRef]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica”, Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Eur. Phys. J. D (1)

A. Le Calvez, E. Freysz, and A. Ducasse, “A model for second harmonic generation in poled glasses,” Eur. Phys. J. D 1, 223–226 (1998).
[CrossRef]

J. Non-Cryst. Solids (2)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

M. Tomozawa and D.W. Shin, “Charge carrier concentration and mobility of ions in a silica glass,” J. Non-Cryst. Solids 241, 140–148 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Comm. (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Comm. 110, 611–614 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity”, Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (2723 KB)     
» Media 2: AVI (2246 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SON spatial distributions recorded in a 5 min-poled sample just after poling ( ◦), and after an annealing duration of 5 min ( •), 15 min ( ▴) and 30 min ( ▪). (b) SON spatial distributions recorded in a 100 min-poled sample just after poling ( ◦), and after an annealing duration of 15 min ( •), 30 min ( ◦) and 100 min ( ▪). Please note the different horizontal scales.

Fig. 2.
Fig. 2.

(a) Theoretical SON spatial distributions just after poling for a 5 min-poled sample (◦), and after an annealing duration of 5 min (•), 15 min (┄) and 30 min (▪). (b) Theoretical SON spatial distributions just after poling for a 100 min-poled (◦), and after an annealing duration of 15 min (•), 30 min (┄) and 100 min (▪). For the thermal annealing of the 100 min poled samples, the sodium mobility has been divided by 4 as compared to the value reported in table 1. A movie showing the time evolutions of the SONs can be downloaded together with this paper.

Fig. 3.
Fig. 3.

Scheme of the theoretical electric field within the sample during the annealing experiment. A negative electric field is created outside the depleted region due to the zero potential between the two surfaces of the sample.

Fig. 4.
Fig. 4.

Time evolution of the charge concentrations during the annealing experiment (Na+: continuous line, H+ dashed line) for the 5 min poled sample. (a) Initial charge distribution. (b), (c), (d), (e) correspond to annealing durations of respectively 5 min, 15 min, 30 min and 50 min. EB corresponds to the value of the bulk electric field (outside the depletion layer) (2.65 MB).

Fig. 5.
Fig. 5.

Time evolution of the charge concentrations during the annealing experiment (Na+: continuous line, H+ dashed line) for the 100 min poled sample. (a) Initial charge distribution. (b), (c), (d), (e) correspond to annealing durations of respectively 15 min, 30 min, 100 min and 165 min (2.19 MB).

Fig. 6.
Fig. 6.

Time evolutions of the theoretical SH signals in the case of sample A(•) and sample B (◦). The incident angle is fixed to the typical value of 60°.

Tables (1)

Tables Icon

Table 1. Parameters used to model the time evolution of the χ (2) spatial distribution during the poling process in Infrasil silica samples. The sodium ion is herein assumed to be the rapid positive carrier for sake of clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p H + t | x = 0 = σ E ( x = 0 )
P 2 ω ( θ ) tan 2 ( θ ) · 0 l d x χ ( 2 ) ( x ) exp ( i Δ k x cos θ ) 2

Metrics