Abstract

The nature of the third-harmonic generation (THG) process in a nematic liquid crystal is investigated for the case of tightly focused, low intensity, laser beams. Colloidal particle induced topological defects in a liquid crystal are visualized in three-dimensions using the dependence of the THG signal on both changes in non-linear susceptibility and the orientation of the liquid crystal director relative to the incident laser polarization state. We have found that the interpretation of THG images in a liquid crystal is complicated not only by the change in polarisation of the electric field as it propagates through the medium but also by anisotropic refractive index mismatch induced aberrations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt, "Liquid crystal materials and liquid crystal displays," Annu. Rev. Mater. Sci. 27, 305-379 (1997).
    [CrossRef]
  2. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  3. I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
    [CrossRef] [PubMed]
  4. P. Poulin, and D. A. Weitz, "Inverted and multiple nematic emulsions," Phys. Rev. E 57, 626 - 637 (1998).
    [CrossRef]
  5. Y. Gu, and N. L. Abbott, "Observation of saturn-ring defects around solid microspheres in nematic liquid crystals," Phys. Rev. Lett. 85, 4719 - 4722 (2000).
    [CrossRef] [PubMed]
  6. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, "Novel colloidal interactions in anisotropic fluids," Science 275, 1770 - 1773 (1997).
    [CrossRef] [PubMed]
  7. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999).
    [CrossRef]
  8. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046 - 3049 (1999).
    [CrossRef]
  9. J.-I. Kosugi, and K. Kajikawaa, "Phase-matched third-harmonic generation from nematic liquid crystals," Appl. Phys. Lett. 84, 5013-5015 (2004).
    [CrossRef]
  10. R. W. Boyd, Nonlinear optics (Academic Press, Inc., New York, 1992).
  11. J. F. Reintjes, Nonlinear optical parametric processes in liquids and gases (Academic Press, Inc., Orlando, 1984).
  12. T. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116-4125 (1995).
    [CrossRef] [PubMed]
  13. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
    [CrossRef]
  14. D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
    [CrossRef]
  15. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
    [CrossRef] [PubMed]
  16. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D Microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
    [CrossRef] [PubMed]
  17. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093 - 3099 (2003).
    [CrossRef] [PubMed]
  18. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, "In vivo optical biopsy of hamster oral cavity with epi-third-harmonic generation microscopy," Opt. Express 14, 6178-6187 (2006).
    [CrossRef] [PubMed]
  19. D. Oron, E. Tal, and Y. Silberberg, "Depth-resolved multiphoton polarisation microscopy by third-harmonic generation," Opt. Lett. 28, 2315-2317 (2003).
    [CrossRef] [PubMed]
  20. R. S. Pillai, G. J. Brakenhoff, and M. Müller, "Analysis of the influence of spherical aberration from focusing through a dielectric slab in quantitative nonlinear optical susceptibility measurements using third-harmonic generation," Opt. Express 14, 260-269 (2006).
    [CrossRef] [PubMed]

2006 (4)

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
[CrossRef] [PubMed]

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

R. S. Pillai, G. J. Brakenhoff, and M. Müller, "Analysis of the influence of spherical aberration from focusing through a dielectric slab in quantitative nonlinear optical susceptibility measurements using third-harmonic generation," Opt. Express 14, 260-269 (2006).
[CrossRef] [PubMed]

S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, "In vivo optical biopsy of hamster oral cavity with epi-third-harmonic generation microscopy," Opt. Express 14, 6178-6187 (2006).
[CrossRef] [PubMed]

2005 (1)

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

2004 (1)

J.-I. Kosugi, and K. Kajikawaa, "Phase-matched third-harmonic generation from nematic liquid crystals," Appl. Phys. Lett. 84, 5013-5015 (2004).
[CrossRef]

2003 (2)

2000 (2)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Y. Gu, and N. L. Abbott, "Observation of saturn-ring defects around solid microspheres in nematic liquid crystals," Phys. Rev. Lett. 85, 4719 - 4722 (2000).
[CrossRef] [PubMed]

1999 (2)

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046 - 3049 (1999).
[CrossRef]

1998 (2)

P. Poulin, and D. A. Weitz, "Inverted and multiple nematic emulsions," Phys. Rev. E 57, 626 - 637 (1998).
[CrossRef]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D Microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

1997 (3)

M. Schadt, "Liquid crystal materials and liquid crystal displays," Annu. Rev. Mater. Sci. 27, 305-379 (1997).
[CrossRef]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, "Novel colloidal interactions in anisotropic fluids," Science 275, 1770 - 1773 (1997).
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

1995 (1)

T. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116-4125 (1995).
[CrossRef] [PubMed]

Abbott, N. L.

Y. Gu, and N. L. Abbott, "Observation of saturn-ring defects around solid microspheres in nematic liquid crystals," Phys. Rev. Lett. 85, 4719 - 4722 (2000).
[CrossRef] [PubMed]

Barad, Y.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046 - 3049 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Beaurepaire, E.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Brakenhoff, G. J.

Brouzés, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Chen, S.-Y.

Chu, S.-W.

Combettes, L.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

Debarre, D.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

Débarre, D.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Fabre, A.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

Farge, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Gu, Y.

Y. Gu, and N. L. Abbott, "Observation of saturn-ring defects around solid microspheres in nematic liquid crystals," Phys. Rev. Lett. 85, 4719 - 4722 (2000).
[CrossRef] [PubMed]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Huang, H.-Y.

Kajikawaa, K.

J.-I. Kosugi, and K. Kajikawaa, "Phase-matched third-harmonic generation from nematic liquid crystals," Appl. Phys. Lett. 84, 5013-5015 (2004).
[CrossRef]

Kosugi, J.-I.

J.-I. Kosugi, and K. Kajikawaa, "Phase-matched third-harmonic generation from nematic liquid crystals," Appl. Phys. Lett. 84, 5013-5015 (2004).
[CrossRef]

Lee, W.-J.

Lin, C.-Y.

Liu, T.-M.

Lubensky, T. C.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, "Novel colloidal interactions in anisotropic fluids," Science 275, 1770 - 1773 (1997).
[CrossRef] [PubMed]

Martin, J.-L.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Moulia, B.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Müller, M.

Musevic, I.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
[CrossRef] [PubMed]

Oron, D.

Patel, J. S.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046 - 3049 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999).
[CrossRef]

Pena, A. M.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

Pillai, R. S.

Poulin, P.

P. Poulin, and D. A. Weitz, "Inverted and multiple nematic emulsions," Phys. Rev. E 57, 626 - 637 (1998).
[CrossRef]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, "Novel colloidal interactions in anisotropic fluids," Science 275, 1770 - 1773 (1997).
[CrossRef] [PubMed]

Ravnik, M.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
[CrossRef] [PubMed]

Schadt, M.

M. Schadt, "Liquid crystal materials and liquid crystal displays," Annu. Rev. Mater. Sci. 27, 305-379 (1997).
[CrossRef]

Schanne-Klein, M. C.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

Shieh, D.-B.

Silberberg, Y.

D. Oron, E. Tal, and Y. Silberberg, "Depth-resolved multiphoton polarisation microscopy by third-harmonic generation," Opt. Lett. 28, 2315-2317 (2003).
[CrossRef] [PubMed]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046 - 3049 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Skarabot, M.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
[CrossRef] [PubMed]

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D Microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Stark, H.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, "Novel colloidal interactions in anisotropic fluids," Science 275, 1770 - 1773 (1997).
[CrossRef] [PubMed]

Sun, C.-K.

Supatto, W.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Tai, S.-P.

Tal, E.

Tkalec, U.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
[CrossRef] [PubMed]

Tordjmann, T.

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

Tsai, H.-J.

Tsai, T.-H.

Tsang, T.

T. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116-4125 (1995).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Weitz, D. A.

P. Poulin, and D. A. Weitz, "Inverted and multiple nematic emulsions," Phys. Rev. E 57, 626 - 637 (1998).
[CrossRef]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, "Novel colloidal interactions in anisotropic fluids," Science 275, 1770 - 1773 (1997).
[CrossRef] [PubMed]

Wilson, K. R.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D Microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Wu, P.-C.

Yelin, D.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046 - 3049 (1999).
[CrossRef]

Yu, C.-H.

Zumer, S.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (1)

M. Schadt, "Liquid crystal materials and liquid crystal displays," Annu. Rev. Mater. Sci. 27, 305-379 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999).
[CrossRef]

J.-I. Kosugi, and K. Kajikawaa, "Phase-matched third-harmonic generation from nematic liquid crystals," Appl. Phys. Lett. 84, 5013-5015 (2004).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

J. Microsc. (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D Microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Nature Methods (1)

D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nature Methods 3, 47-53 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

T. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116-4125 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

P. Poulin, and D. A. Weitz, "Inverted and multiple nematic emulsions," Phys. Rev. E 57, 626 - 637 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Gu, and N. L. Abbott, "Observation of saturn-ring defects around solid microspheres in nematic liquid crystals," Phys. Rev. Lett. 85, 4719 - 4722 (2000).
[CrossRef] [PubMed]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046 - 3049 (1999).
[CrossRef]

PNAS (1)

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila emryos with femtosecond laser pulses," PNAS 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science (2)

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, "Two-dimensional nematic colloidal crystals self-assembled by topological defects," Science 313, 954-958 (2006).
[CrossRef] [PubMed]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, "Novel colloidal interactions in anisotropic fluids," Science 275, 1770 - 1773 (1997).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd, Nonlinear optics (Academic Press, Inc., New York, 1992).

J. F. Reintjes, Nonlinear optical parametric processes in liquids and gases (Academic Press, Inc., Orlando, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Schematic of the experimental set up. L1 and L2: lenses used for expanding and collimating the laser beam; Q: quarter wave plate, used to convert from linear to circular polarization; GT: Glan Taylor prism on a rotation stage to obtain an adjustable linear polarization; O: focusing objective (63x/1.25 NA oil); S: sample, C: collection objective (20x/0.4 NA); and SM: spectrometer equipped with a CCD camera for detection at the third-harmonic or fundamental wavelength. (b) Schematic of the sample configuration. 5CB LC molecules are aligned along the y-axis using rubbed, polyimide coated cover-glasses. Polystyrene spheres, attached to either of the cover glasses, are embedded in the LC. ϕ denotes the angle of the input or detected polarization relative to the y-axis.

Fig. 2.
Fig. 2.

(a). THG z-responses across the glass/LC interface at three intensity levels. The linear input polarization is at ϕ=π/4 (b) THG z-response across the glass/LC interface using circular input polarization with a laser intensity of 0.25 MW/cm2.

Fig. 3.
Fig. 3.

THG intensity from within the LC medium as a function of (a) the angle between the input polarization and the LC director and (b) the angle between the analyzer and the LC director. In (b) two different excitation polarization states have been used: linear (red) with ϕ=0.22π and circular (blue). The error bars correspond to the standard deviation of five intensity measurements. The solid lines are least squares fits of the experimental data to theoretical expressions for (a) the signal generation in a type II phase matched THG process; and (b) a detected polarized signal through an analyzer.

Fig. 4.
Fig. 4.

THG optical sections of a polystyrene bead in a nematic LC medium near the equatorial plane. The input polarization is ϕ=0 for (a) and ϕ=π/2 for (b).

Fig. 5.
Fig. 5.

(a). yz-image of a polystyrene sphere attached to the first cover glass of a nematic LC cell, (b) and (c) xy images in planes respectively coinciding with and 1 µm above the equatorial plane of a sphere attached to the second cover glass. For all the three cases the input polarization is ϕ=π/2.

Fig. 6.
Fig. 6.

yz-image of a polystyrene sphere attached to the first cover glass of a nematic LC cell. The input polarization is ϕ=0. The intensity at the focal plane is above the threshold level as pointed out in Fig. 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I THG b 4 Δ k 2 exp ( b Δ k )

Metrics