Abstract

Tunable delays in semiconductor optical amplifiers are achieved via four wave mixing between a strong pump beam and a modulated probe beam. The delay of the probe beam can be controlled both electrically, by changing the SOA bias, and optically, by varying the pump power or the pump-probe detuning. For sinusoidal modulated signal at 0.5 GHz, a tunable delay of 1.6 ns is achieved. This corresponds to a RF phase change of 1.6 π. For 1.3 ns optical pulses propagating through the SOA a delay of 0.59 ns is achieved corresponding to a delay-bandwidth product exceeding 0.45. For both the cases, slow light and superluminal light are observed as the pump-probe detuning is varied.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
    [Crossref]
  2. R. S. Tucker, P. C. Ku, and C J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41, 208–209 (2005).
    [Crossref]
  3. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref] [PubMed]
  4. M. S. Bigelow, N. N. Lepeshkin, and R.W. Boyd, “Observation of ultraslow light propagation in ruby crystal at room temperature,” Phys Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  5. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
    [Crossref]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [Crossref] [PubMed]
  7. A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
    [Crossref]
  8. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
    [Crossref] [PubMed]
  9. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [Crossref] [PubMed]
  10. J. Mørk, R. Kjær, M. van der Poel, L. Oxenløwe, and K. Yvind, “Slow light in semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
    [Crossref] [PubMed]
  11. X. Zhao, P. Palinginis, Bala Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005)
    [Crossref] [PubMed]
  12. M. R. Fisher and S.L. Chuang, “Variable group delay and pulse reshaping of high bandwidth optical signals,” IEEE Journal of Quan. Elect. 41, 885–891 (2005)
    [Crossref]
  13. M. V. Pod, J. Mork, and J.M. Hvam, “Tunable propagation delay of femtosecond pulses in a quantum-dot optical amplifier at room temperature,” Conference on Lasers and Electro-Optics (CLEO) # JWB96 (2005).
  14. A.V. Uskov and C. J. Chang-Hasnain, “Slow and superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 55–56 (2005)
    [Crossref]
  15. A. Uskov, F. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 731–733 (2006).
    [Crossref]
  16. J. B. Khurgin, Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1073 (2005).
    [Crossref]
  17. H. Su, P. Kondratko, and S. L. Chaung, “Variable optical delay using population oscillation and four-wave mixing in SOAs,” Opt. Express 14, 4800–4807 (2006).
    [Crossref] [PubMed]
  18. G.P. Agrawal, Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5, 147–158, (1988)
    [Crossref]
  19. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
    [Crossref] [PubMed]

2006 (4)

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref] [PubMed]

A. Uskov, F. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 731–733 (2006).
[Crossref]

H. Su, P. Kondratko, and S. L. Chaung, “Variable optical delay using population oscillation and four-wave mixing in SOAs,” Opt. Express 14, 4800–4807 (2006).
[Crossref] [PubMed]

2005 (9)

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[Crossref] [PubMed]

J. B. Khurgin, Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1073 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[Crossref] [PubMed]

J. Mørk, R. Kjær, M. van der Poel, L. Oxenløwe, and K. Yvind, “Slow light in semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
[Crossref] [PubMed]

X. Zhao, P. Palinginis, Bala Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005)
[Crossref] [PubMed]

M. R. Fisher and S.L. Chuang, “Variable group delay and pulse reshaping of high bandwidth optical signals,” IEEE Journal of Quan. Elect. 41, 885–891 (2005)
[Crossref]

A.V. Uskov and C. J. Chang-Hasnain, “Slow and superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 55–56 (2005)
[Crossref]

R. S. Tucker, P. C. Ku, and C J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41, 208–209 (2005).
[Crossref]

2004 (1)

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

2003 (2)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R.W. Boyd, “Observation of ultraslow light propagation in ruby crystal at room temperature,” Phys Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

1988 (1)

Agrawal, G.P.

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R.W. Boyd, “Observation of ultraslow light propagation in ruby crystal at room temperature,” Phys Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Boyd, R.W.

M. S. Bigelow, N. N. Lepeshkin, and R.W. Boyd, “Observation of ultraslow light propagation in ruby crystal at room temperature,” Phys Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Chang, S. W.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

Chang-Hasnain, C J.

R. S. Tucker, P. C. Ku, and C J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41, 208–209 (2005).
[Crossref]

Chang-Hasnain, C. J.

A. Uskov, F. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 731–733 (2006).
[Crossref]

A.V. Uskov and C. J. Chang-Hasnain, “Slow and superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 55–56 (2005)
[Crossref]

X. Zhao, P. Palinginis, Bala Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005)
[Crossref] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[Crossref] [PubMed]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[Crossref]

Chaung, S. L.

Chuang, S. L.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[Crossref]

Chuang, S.L.

M. R. Fisher and S.L. Chuang, “Variable group delay and pulse reshaping of high bandwidth optical signals,” IEEE Journal of Quan. Elect. 41, 885–891 (2005)
[Crossref]

Crankshaw, S.

Dahan, D.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Eisenstein, G.

Fisher, M. R.

M. R. Fisher and S.L. Chuang, “Variable group delay and pulse reshaping of high bandwidth optical signals,” IEEE Journal of Quan. Elect. 41, 885–891 (2005)
[Crossref]

Foster, M. A.

Gaeta, A. L.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Hemmer, P.

Hvam, J.M.

M. V. Pod, J. Mork, and J.M. Hvam, “Tunable propagation delay of femtosecond pulses in a quantum-dot optical amplifier at room temperature,” Conference on Lasers and Electro-Optics (CLEO) # JWB96 (2005).

Khurgin, J. B.

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[Crossref]

Kjær, R.

Kondratko, P.

Ku, P. C.

R. S. Tucker, P. C. Ku, and C J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41, 208–209 (2005).
[Crossref]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[Crossref]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R.W. Boyd, “Observation of ultraslow light propagation in ruby crystal at room temperature,” Phys Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Li, T.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

Lipson, M.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Luo, T.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Moewe, M.

Mork, J.

M. V. Pod, J. Mork, and J.M. Hvam, “Tunable propagation delay of femtosecond pulses in a quantum-dot optical amplifier at room temperature,” Conference on Lasers and Electro-Optics (CLEO) # JWB96 (2005).

Mørk, J.

Okawachi, Y.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Oxenløwe, L.

Palinginis, P.

Pesala, Bala

Pod, M. V.

M. V. Pod, J. Mork, and J.M. Hvam, “Tunable propagation delay of femtosecond pulses in a quantum-dot optical amplifier at room temperature,” Conference on Lasers and Electro-Optics (CLEO) # JWB96 (2005).

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Sedgwick, F.

A. Uskov, F. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 731–733 (2006).
[Crossref]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[Crossref] [PubMed]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

Sharping, J. E.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Su, H.

Tucker, R. S.

R. S. Tucker, P. C. Ku, and C J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41, 208–209 (2005).
[Crossref]

Uskov, A.

A. Uskov, F. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 731–733 (2006).
[Crossref]

Uskov, A.V.

A.V. Uskov and C. J. Chang-Hasnain, “Slow and superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 55–56 (2005)
[Crossref]

van der Poel, M.

Wang, H.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

Wang, Y.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Willner, A. E.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Xu, Q.

Yu, C.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Yvind, K.

Zhang, L.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Zhang, W.

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Zhao, X.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Electron. Lett. (2)

A.V. Uskov and C. J. Chang-Hasnain, “Slow and superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 55–56 (2005)
[Crossref]

R. S. Tucker, P. C. Ku, and C J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41, 208–209 (2005).
[Crossref]

IEEE Journal of Quan. Elect. (1)

M. R. Fisher and S.L. Chuang, “Variable group delay and pulse reshaping of high bandwidth optical signals,” IEEE Journal of Quan. Elect. 41, 885–891 (2005)
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Uskov, F. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 731–733 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Nature (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Opt. Express (6)

Optics Lett. (1)

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Optics Lett. 29, 2291–2293 (2004).
[Crossref]

Phys Rev. Lett. (1)

M. S. Bigelow, N. N. Lepeshkin, and R.W. Boyd, “Observation of ultraslow light propagation in ruby crystal at room temperature,” Phys Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Proc. of IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. of IEEE 91, 1884–1897 (2003).
[Crossref]

Proc. of SPIE (1)

A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, and Y. Wang, “Data bit distortion induced by slow light in optical communication systems,” Proc. of SPIE,  6130, 61300T-1 (2006).
[Crossref]

Other (1)

M. V. Pod, J. Mork, and J.M. Hvam, “Tunable propagation delay of femtosecond pulses in a quantum-dot optical amplifier at room temperature,” Conference on Lasers and Electro-Optics (CLEO) # JWB96 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental set-up to realize tunable delay in SOA: Strong pump (DFB1) and weak probe beam (DFB2) which is externally modulated, are combined before they enter the SOA. Isolators are used to prevent any back reflections entering the SOA. The output of SOA is fed to the high speed detector which converts the optical signal into an electrical signal. An optical tap is used to monitor the optical spectrum. The inset shows the optical spectrum at the input and the output of the SOA respectively. In the inset, Ω, refers to the detuning between the pump and the probe while fm refers to modulation frequency of signal. At the output, in addition to pump and probe conjugate is also present.

Fig. 2.
Fig. 2.

Optical Spectrum for various frequency detuning values Ω=ωprobepump. The pump, probe and the conjugate are indicated by arrows. It is evident from the figure that for the case of small positive frequency detuning, the conjugate is much higher than the probe at the output. However, for the same negative frequency detuning, the conjugate is smaller than probe.

Fig. 3.
Fig. 3.

Delay as a function of detuning for three different scenarios. In the first scenario (green curve), the generation of the conjugate is suppressed. In the second scenario (red curve), both probe and conjugate co-exist at the output but only probe is detected. In a more realistic scenario (blue curve), both probe and conjugate are detected at output.

Fig. 4.
Fig. 4.

Oscilloscope time traces of the modulated probe signal (0.5 GHz) for different detuning values. Pump power at the input of the SOA is 9 dBm and the probe D.C power is -3 dBm. As the detuning decreases, the time delay/advancement is increased.

Fig. 5.
Fig. 5.

Delay curves for different pump powers. In general, delay increases as the pump power is increased.

Fig. 6.
Fig. 6.

Oscilloscope time traces of pulse for different detuning values. Pump input power to SOA is 3 dBm probe D.C power is -9 dBm. A maximum tunable delay of 0.59 ns is observed.

Fig. 7.
Fig. 7.

Delay curves for different pump powers.

Fig. 8.
Fig. 8.

Time delay as a function of SOA bias for detuning of -3 GHz

Metrics