Abstract

This investigation experimentally demonstrates a tunable slow light device using a quantum dot (QD) semiconductor laser. The QD semiconductor laser at 1.3 µm fabricated on a GaAs substrate is grown by molecular beam epitaxy. Tunable slow light can be achieved by adjusting the bias current and wavelength detuning. The slow light device operated under probe signal from 5 to 10 GHz is presented. Moreover, we also demonstrate that the tunable slow light device can be used in a subcarrier multiplexed system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006).
    [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999).
    [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  5. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006).
    [CrossRef] [PubMed]
  6. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  7. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  8. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
    [CrossRef] [PubMed]
  9. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005).
    [CrossRef] [PubMed]
  10. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006).
    [CrossRef] [PubMed]
  11. H. Su and S. L. Chuang, "Room-temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006).
    [CrossRef] [PubMed]
  12. H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Applied Physics Letters 88,. 061102 (2006).
    [CrossRef]
  13. D. Bimberg, "Quantum dots for lasers, amplifiers and computing," Journal of Physics D: Applied Physics 38, 2055-2058 (2005).
    [CrossRef]
  14. N. N. Ledentsov, "Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts," IEEE Journal of Selected Topics in Quantum Electronics 8, 1015 - 1024 (2002).
    [CrossRef]
  15. V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005).
    [CrossRef]
  16. H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
    [CrossRef]
  17. Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
    [CrossRef]
  18. I. Kaminow and T. Li, Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002), Chap. 15.
  19. O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
    [CrossRef]
  20. H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
    [CrossRef]

2006

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006).
[CrossRef]

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. Su and S. L. Chuang, "Room-temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006).
[CrossRef] [PubMed]

H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006).
[CrossRef] [PubMed]

2005

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
[CrossRef] [PubMed]

X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005).
[CrossRef] [PubMed]

V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

D. Bimberg, "Quantum dots for lasers, amplifiers and computing," Journal of Physics D: Applied Physics 38, 2055-2058 (2005).
[CrossRef]

2004

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

2002

N. N. Ledentsov, "Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts," IEEE Journal of Selected Topics in Quantum Electronics 8, 1015 - 1024 (2002).
[CrossRef]

2001

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
[CrossRef]

2000

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Abedin, K. S.

Adamczyk, O. H.

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
[CrossRef]

Allen, C.

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Bimberg, D.

D. Bimberg, "Quantum dots for lasers, amplifiers and computing," Journal of Physics D: Applied Physics 38, 2055-2058 (2005).
[CrossRef]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Chang, S. W.

Chang, Y. H.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Chang-Hasnain, C. J.

Chi, J. Y.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Chuang, S. L.

Dahan, D.

Demarest, K.

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Eisenstein, G.

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

González Herráez, M.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hemmer, P.

Hotate, K.

Hsiao, R. S.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Hsu, Y. J.

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Hui, R.

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

Kondratko, P.

Kovsh, A. R.

V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005).
[CrossRef]

Ku, P. C.

Kuo, H. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Lai, F. I.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Ledentsov, N. N.

N. N. Ledentsov, "Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts," IEEE Journal of Selected Topics in Quantum Electronics 8, 1015 - 1024 (2002).
[CrossRef]

Lee, S.

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Li, T.

Lin, G.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Lin, K. F.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

Maleev, N. A.

V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005).
[CrossRef]

Okawachi, Y.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Palinginis, P.

Peddanarappagari, K.

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

Peng, P. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

Pesala, B.

Pua, H. Y.

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

Qian, Y.

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
[CrossRef]

Sahin, A. B.

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sedgwick, F.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Su, H.

Thévenaz, L.

Tsai, W. K.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

Ustinov, V. M.

V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005).
[CrossRef]

Wang, H.

Wang, S. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Willner, A. E.

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
[CrossRef]

Yang, H. P.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Yu, H. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

Zhao, X.

Zhu, B.

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Zhukov, A. E.

V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005).
[CrossRef]

Electronics Letters

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005).
[CrossRef]

IEEE Journal of Selected Topics in Quantum Electronics

N. N. Ledentsov, "Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts," IEEE Journal of Selected Topics in Quantum Electronics 8, 1015 - 1024 (2002).
[CrossRef]

IEEE Photonics Technology Letters

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006).
[CrossRef]

IEEE Transactions on Microwave Theory and Techniques

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001).
[CrossRef]

Journal of Lightwave Technology

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000).
[CrossRef]

Journal of Physics D: Applied Physics

D. Bimberg, "Quantum dots for lasers, amplifiers and computing," Journal of Physics D: Applied Physics 38, 2055-2058 (2005).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Optics & Photonics News

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006).
[CrossRef]

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Physica Status Solidi A

V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005).
[CrossRef]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Other

H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Applied Physics Letters 88,. 061102 (2006).
[CrossRef]

I. Kaminow and T. Li, Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of monolithically single-mode QD VCSEL.

Fig. 2
Fig. 2

Schematic diagram of TO-Can packaged QD VCSEL.

Fig. 3.
Fig. 3.

Output spectrum and light-current characteristics of quantum dot VCSEL.

Fig. 4.
Fig. 4.

Experimental setup for measuring the slow light in QD VCSEL. (EOM: electro-optic modulator, VA: variable optical attenuator, C: optical circulator, OC: optical coupler, PC: polarization controller, RFA: RF amplifier, PD: photodetector, OSA: optical spectrum analyzer)

Fig. 5.
Fig. 5.

The measurements of time delay of QD VCSEL at the various bias currents.

Fig. 6.
Fig. 6.

The measurements of time delay at different wavelength detuning.

Fig. 7.
Fig. 7.

The waveform of probe signals at different modulation frequencies.

Fig. 8.
Fig. 8.

Experimental setup for the QD VCSEL in a subcarrier multiplexed system. (PG: pattern generator, LPF: low pass filter, OA: optical amplifier).

Fig. 9.
Fig. 9.

9 GHz 100 Mb/s data signal and eye diagram of 100 Mb/s signal from the oscilloscope.

Fig. 10.
Fig. 10.

Proposed architecture for the PMD compensation using a QD VCSEL. (SCM signal: subcarrier multiplexed signal, PBS: polarization beam splitter)

Metrics