Abstract

We show that it is possible to adapt existing software packages developed originally for modeling telecommunication devices and systems to reliably predict and optimize the performance of high-power Ytterbium-doped fiber amplifier and laser systems. The ready availability of a flexible, user-friendly design tool should be of considerable practical interest to scientists and engineers working with this important new laser technology since Ytterbium amplifier and amplifier cascades are often difficult to optimize experimentally due to the three-level nature of the Ytterbium laser transition. As examples of the utility and accuracy of the software, as well as the complexity of the systems and amplifier properties that can be successfully modeled, we present a comparison of experimental and theoretical results for individual core and cladding pumped amplifiers, and also for an ultra-short pulse four-stage amplifier system optimized both to provide a broad gain bandwidth and to minimize nonlinear effects. We also show how high energy 100 ns pulses with complex user definable temporal profiles can be created in a gain-saturated amplifier by suitable pre-shaping of the low-energy input pulses. Furthermore, with appropriate modifications the same software package can be applied to fiber amplifiers based on other rare-earth elements and glass hosts.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness " in Conference on Lasers and Electro-Optics Europe, (Optical Society of America, 2005).
  2. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, "321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source," in Optical Fiber Communications Conference (Optical Society of America, 2005), paper PDP3.
  3. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (New York: Wiley, 1994).
  4. F. He, J. H. Price, and D. J. Richardson, "Optimisation of short pulse multi-stage Yb fiber amplifier systems using commercial gain-modelling software," in Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonics Applications Systems Technologies, (Optical Society of America, 2006), paper CThR6.
  5. D. Strickland, and G. Mourou, "Compression Of Amplified Chirped Optical Pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  6. C. R. Giles, and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
    [CrossRef]
  7. C. R. Giles, and E. Desurvire, "Modeling Erbium-Doped Fiber Amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
    [CrossRef]
  8. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
    [CrossRef]
  9. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  10. D. E. McCumber, "Theory of Photon-Terminated Optical Masers," Physical Review 134, 299-306 (1964).
    [CrossRef]
  11. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," in Optical Fiber Sensor Conference, (Optical Society of America, 1988), paper PD5.
  12. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  14. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).Q2
    [CrossRef]
  15. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004).
    [CrossRef] [PubMed]
  16. A. Galvanauskas, Z. Sartania, and M. Bischoff, "Millijoule femtosecond all-fiber system," in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), paper CMA1.
  17. A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser," Electron. Lett. 40, 928-929 (2004).
    [CrossRef]
  18. A. Bononi, and L. A. Rusch, "Doped-fiber amplifier dynamics: A system perspective," J. Lightwave Technol. 16, 945-956 (1998).
    [CrossRef]
  19. Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 991-1007 (1997).Q3
    [CrossRef]
  20. S. R. Chinn, "Simplified modeling of transients in gain-clamped erbium-doped fiber amplifiers," J. Lightwave Technol. 16, 1095-1100 (1998).
    [CrossRef]
  21. Y. Wang, and H. Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21, 2262-2270 (2003).
    [CrossRef]

2004

2003

2002

2001

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).Q2
[CrossRef]

1998

1997

Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 991-1007 (1997).Q3
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

1995

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

1991

C. R. Giles, and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
[CrossRef]

C. R. Giles, and E. Desurvire, "Modeling Erbium-Doped Fiber Amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

1985

D. Strickland, and G. Mourou, "Compression Of Amplified Chirped Optical Pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

1964

D. E. McCumber, "Theory of Photon-Terminated Optical Masers," Physical Review 134, 299-306 (1964).
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

Bononi, A.

Broeng, J.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

Chinn, S. R.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

Desurvire, E.

C. R. Giles, and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
[CrossRef]

C. R. Giles, and E. Desurvire, "Modeling Erbium-Doped Fiber Amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Fry, A. R.

Furusawa, K.

A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser," Electron. Lett. 40, 928-929 (2004).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).Q2
[CrossRef]

Giles, C. R.

C. R. Giles, and E. Desurvire, "Modeling Erbium-Doped Fiber Amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

C. R. Giles, and E. Desurvire, "Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers," J. Lightwave Technol. 9, 147-154 (1991).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

Jakobsen, C.

Keller, U.

Lefort, L.

Liem, A.

Limpert, J.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

Malinowski, A.

A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser," Electron. Lett. 40, 928-929 (2004).
[CrossRef]

McCumber, D. E.

D. E. McCumber, "Theory of Photon-Terminated Optical Masers," Physical Review 134, 299-306 (1964).
[CrossRef]

Mourou, G.

D. Strickland, and G. Mourou, "Compression Of Amplified Chirped Optical Pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Nolte, S.

Paschotta, R.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

Petersson, A.

Piper, A.

A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser," Electron. Lett. 40, 928-929 (2004).
[CrossRef]

Po, H.

Price, J. H. V.

Reich, M.

Richardson, D. J.

A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser," Electron. Lett. 40, 928-929 (2004).
[CrossRef]

L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
[CrossRef]

Rusch, L. A.

Schreiber, T.

Spuhler, G. J.

Srivastava, A. K.

Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 991-1007 (1997).Q3
[CrossRef]

Strickland, D.

D. Strickland, and G. Mourou, "Compression Of Amplified Chirped Optical Pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Sun, Y.

Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 991-1007 (1997).Q3
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

Tunnermann, A.

Wang, Y.

Weston, J.

Zellmer, H.

Zyskind, J. L.

Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 991-1007 (1997).Q3
[CrossRef]

Electron. Lett.

A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser," Electron. Lett. 40, 928-929 (2004).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 991-1007 (1997).Q3
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers - Versatile sources for the 1-1.2 um region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).Q1
[CrossRef]

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).Q2
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

D. Strickland, and G. Mourou, "Compression Of Amplified Chirped Optical Pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Physical Review

D. E. McCumber, "Theory of Photon-Terminated Optical Masers," Physical Review 134, 299-306 (1964).
[CrossRef]

Other

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," in Optical Fiber Sensor Conference, (Optical Society of America, 1988), paper PD5.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness " in Conference on Lasers and Electro-Optics Europe, (Optical Society of America, 2005).

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, "321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source," in Optical Fiber Communications Conference (Optical Society of America, 2005), paper PDP3.

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (New York: Wiley, 1994).

F. He, J. H. Price, and D. J. Richardson, "Optimisation of short pulse multi-stage Yb fiber amplifier systems using commercial gain-modelling software," in Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonics Applications Systems Technologies, (Optical Society of America, 2006), paper CThR6.

A. Galvanauskas, Z. Sartania, and M. Bischoff, "Millijoule femtosecond all-fiber system," in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), paper CMA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Yb absorption and emission cross-section data for different host-glass compositions

Fig. 2.
Fig. 2.

Experimental and simulation results for a single stage core-pumped amplifier using 4 m length of fiber and a 1060 nm narrow-line signal.

Fig. 3.
Fig. 3.

Experimental and simulation results for a single stage cladding-pumped amplifier using 6.5 m fiber and broad-band signal

Fig. 4.
Fig. 4.

Amplifier system schematic for a CPA system.

Fig. 5.
Fig. 5.

Results for a broad bandwidth amplifier cascade. a) Gain spectrum from simulation. (The input pulse spectrum is shown for reference.) b)-d) Simulation results and experimental data for output pulse spectra. b) After core-pumped amplifiers on a dB scale. c)-d) After the whole system on dB and linear scales respectively.

Fig. 6.
Fig. 6.

Results for a broad bandwidth amplifier cascade with 40 µm core LMA fiber. a) Gain spectrum from simulation. (The input pulse spectrum is shown for reference.) b) Simulation results and experimental data for the output pulse spectra after the whole system

Fig. 7.
Fig. 7.

Output pulse shaping and dynamic gain variation for a square input pulse. (a)Shows output pulse shapes from the final amplifier at pump powers of 5.7 W, 13.7 W, 21.7 W, and 25.7 W, respectively; (b) shows the maximum gain variation between the leading and trailing edge of the output pulse at different output pulse energies.

Fig. 8.
Fig. 8.

Experimental and simulation results demonstrating how the desired output pulse shapes were obtained in the presence of with gain saturation an in Yb-fiber amplifier system by pre-shaping the input pulses. (Examples shown are (a) triangular, (b) square, and (c) step output pulses.)

Tables (2)

Tables Icon

Table I. Core-pumped Yb-fiber amplifier parameters used in the simulation

Tables Icon

Table II. Cladding-pumped Yb-fiber amplifier parameters used in the simulations

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

N 2 ( λ , t , z ) t = [ R 12 ( λ ) + W 12 ( λ ) ] N 1 ( λ , t , z ) [ R 21 ( λ ) + W 21 ( λ ) + A 21 ] N 2 ( λ , t , z )
± d P p ± ( λ , z ) d z = Γ p ( λ ) [ σ e ( λ ) N 2 ( λ , z ) σ a ( λ ) N 1 ( λ , z ) ] ρ P p ± ( λ , z ) α p P p ± ( λ , z )
d P s ( λ , z ) d z = Γ s ( λ ) [ σ e ( λ ) N 2 ( λ , z ) σ a ( λ ) N 1 ( λ , z ) ] ρ P s ( λ , z ) α s P s ( λ , z )
± d P a ± ( λ , z ) d z = Γ s ( λ ) [ σ e ( λ ) N 2 ( λ , z ) σ a ( λ ) N 1 ( λ , z ) ] ρ P a ± ( λ , z ) α s P a ± ( λ , z )
+ 2 Γ s ( λ ) σ e ( λ ) N 2 ( λ , z ) ρ h υ s Δ υ
N 2 ( λ , t , z ) t = [ R 12 ( λ ) + W 12 ( λ ) ] N 1 ( λ , t , z ) [ R 21 ( λ ) + W 21 ( λ ) + A 21 ] N 2 ( λ , t , z )
P s ( λ , t , z ) z + 1 v P s ( λ , t , z ) t = Γ s ( λ ) [ σ e ( λ ) N 2 ( λ , t , z ) σ a ( λ ) N 1 ( λ , t , z ) ] ρ P s ( λ , t , z )
α s P s ( λ , t , z )
± P p ± ( λ , t , z ) z + 1 v P p ± ( λ , t , z ) t = Γ p ( λ ) [ σ e ( λ ) N 2 ( λ , t , z ) σ a ( λ ) N 1 ( λ , t , z ) ] ρ P p ± ( λ , t , z )
α p P p ± ( λ , t , z )
r ( t ) ρ A eff 0 L N 2 ( z , t ) d z ,
r . ( t ) = r ( t ) τ + j = 0 N P j in ( t ) h υ j [ 1 e B j r ( t ) C j ] ,

Metrics