Abstract

We demonstrated a generation of cylindrically symmetric, polarized laser beams with narrow linewidth and fine tunability. Since an LP11 mode beam in an optical fiber is a superposition of an HE21 (hybrid) mode beam and a TE01 or TM01 mode beam, firstly, a higher order transverse (TEM01 or TEM10) mode laser beam with narrow linewidth and fine tunability was generated from an external cavity diode laser (ECDL) in conjunction with a phase adjustment plate. Then the beam generated was passed in a two mode optical fiber. A doughnut shaped laser beam with the cylindrically symmetric polarization (a radially or azimuthally polarized beam) was obtained by properly adding stress-induced birefringence in the optical fiber.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Doughnut mode magneto-optical trap

M. J. Snadden, A. S. Bell, R. B. M. Clarke, E. Riis, and D. H. McIntyre
J. Opt. Soc. Am. B 14(3) 544-552 (1997)

Generation of hollow scalar and vector beams using a spot-defect mirror

Akihiko Ito, Yuichi Kozawa, and Shunichi Sato
J. Opt. Soc. Am. A 27(9) 2072-2077 (2010)

Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal

Manasadevi P. Thirugnanasambandam, Yuri Senatsky, and Ken-ichi Ueda
Opt. Express 19(3) 1905-1914 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [Crossref] [PubMed]
  2. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beam,” Opt. Express 10, 324–331 (2002).
    [PubMed]
  3. A. V. Nestrov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
    [Crossref]
  4. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [Crossref] [PubMed]
  5. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [Crossref] [PubMed]
  6. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31, 1726–1728 (2006).
    [Crossref] [PubMed]
  7. E. G. Churin, J. Hosfeld, and T. Tschudi, “Polarization configuration with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
    [Crossref]
  8. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
    [Crossref]
  9. A. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
    [Crossref]
  10. M. A. A Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wavefronts,” Opt. Lett. 27, 1929–1931 (2002).
    [Crossref]
  11. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003).
    [Crossref] [PubMed]
  12. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
    [Crossref] [PubMed]
  13. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
    [Crossref] [PubMed]
  14. D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
    [Crossref]
  15. S. M. Iftiquar, “A tunable doughnut laser beam for cold-atom experiment,” J. Opt. B: Quantum Semiclass. Opt. 5, 40–43 (2003).
    [Crossref]
  16. J. J. McClelland and M. R. Scheinfein, “Laser focusing of atoms: a particle-optics approach” J. Opt. Soc. Am. B 8, 1974–1986 (1991).
    [Crossref]
  17. G. M. Gallatin and P. L. Gould, “Laser focusing of atomic beams,” J. Opt. Soc. Am. B 8, 502–508 (1991).
    [Crossref]
  18. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747–2752 (2003).
    [Crossref] [PubMed]
  19. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
    [Crossref]
  20. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
    [Crossref]
  21. G. Volpe and D. Petrov, “Genertion of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
    [Crossref]
  22. J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. 10, 125–127 (1974).
    [Crossref]

2006 (2)

2005 (2)

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[Crossref] [PubMed]

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[Crossref]

2004 (2)

G. Volpe and D. Petrov, “Genertion of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (5)

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[Crossref]

A. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[Crossref]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beam,” Opt. Express 10, 324–331 (2002).
[PubMed]

M. A. A Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wavefronts,” Opt. Lett. 27, 1929–1931 (2002).
[Crossref]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

2000 (3)

A. V. Nestrov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[Crossref] [PubMed]

1993 (1)

E. G. Churin, J. Hosfeld, and T. Tschudi, “Polarization configuration with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

1991 (2)

1974 (1)

J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. 10, 125–127 (1974).
[Crossref]

Arlt, J.

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Biener, G.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

Bomzon, A.

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

Brown, T.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Churin, E. G.

E. G. Churin, J. Hosfeld, and T. Tschudi, “Polarization configuration with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

Courjon, D.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[Crossref]

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[Crossref]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

Dholakia, K.

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

Gallatin, G. M.

Gan, X.

Ganic, D.

Gould, P. L.

Grosjean, T.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[Crossref]

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[Crossref]

Gu, M.

Hasman, E.

A. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

Hosfeld, J.

E. G. Churin, J. Hosfeld, and T. Tschudi, “Polarization configuration with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

Iftiquar, S. M.

S. M. Iftiquar, “A tunable doughnut laser beam for cold-atom experiment,” J. Opt. B: Quantum Semiclass. Opt. 5, 40–43 (2003).
[Crossref]

Jackel, S.

Juskaitis, R.

Kleiner, V.

Kozawa, Y.

Lancster, G. P. T.

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

Leger, J. R.

Livesey, J.

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

Massoumian, F.

McClelland, J. J.

McGloin, D.

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

Meir, A.

Moshe, I.

Neil, M. A. A

Nestrov, A. V.

A. V. Nestrov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

Niziev, V. G.

A. V. Nestrov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

Petrov, D.

G. Volpe and D. Petrov, “Genertion of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

Rhodes, D. P.

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[Crossref]

Sato, S.

Scheinfein, M. R.

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[Crossref]

Tschudi, T.

E. G. Churin, J. Hosfeld, and T. Tschudi, “Polarization configuration with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

Volpe, G.

G. Volpe and D. Petrov, “Genertion of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

Wilson, T.

Wynne, J. J.

J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. 10, 125–127 (1974).
[Crossref]

Yonezawa, K.

Youngworth, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Zhan, Q.

Appl. Phys. Lett. (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. 10, 125–127 (1974).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

S. M. Iftiquar, “A tunable doughnut laser beam for cold-atom experiment,” J. Opt. B: Quantum Semiclass. Opt. 5, 40–43 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

A. V. Nestrov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

Opt. Commun. (5)

E. G. Churin, J. Hosfeld, and T. Tschudi, “Polarization configuration with singular point formed by computer generated holograms,” Opt. Commun. 99, 13–17 (1993).
[Crossref]

D. P. Rhodes, G. P. T. Lancster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,” Opt. Commun. 214, 247–254 (2002).
[Crossref]

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[Crossref]

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002).
[Crossref]

G. Volpe and D. Petrov, “Genertion of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Supplementary Material (1)

» Media 1: MPG (840 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic for generating cylindrically symmetric, polarized beams by use of an external cavity diode laser (ECDL) and a two mode optical fiber.

Fig. 2.
Fig. 2.

Transverse mode combinations in an optical fiber.

Fig. 3.
Fig. 3.

Higher order transverse modes from the ECDL with a phase adjustment plate. (a). The intensity distribution, (b). the horizontal intensity profile and the fitting to the theoretical one and (c). the interference pattern of the TEM10 mode beam generated. (d). The intensity distribution, (e). the vertical intensity profile and the fitting to the theoretical one and (f). the interference pattern of the TEM01 mode beam generated.

Fig. 4.
Fig. 4.

(a). Schematic drawing of conversion from a TEM10 mode beam to a radially polarized beam. (b). Observed total intensity distribution and the intensity profile. (c).–(f). Intensity distributions after passing through a linear polarizer. Each arrow indicates the direction of the polarizer.

Fig. 5.
Fig. 5.

(a). Schematic drawing of conversion from a TEM01 mode to an azimuthally polarized beam. (b). Observed total intensity distribution and the intensity profile. (c).–(f). Intensity distributions after passing through a linear polarizer. Each arrow indicates the direction of the polarizer.

Fig. 6.
Fig. 6.

(from top to bottom) Spectra of a TEM00 mode beam from the ECDL, a TEM10 mode beam from the ECDL with a phase adjustment plate and a radially polarized beam after propagating an optical fiber.

Fig. 7.
Fig. 7.

(840 KB) Video image of resonant emission from a cesium vapor cell through which a radially polarized beam passed. The wavelength was tuned around the resonant wavelength of cesium atom. When the wavelength was in resonance, the emission was strong and vice versa. Note that the doughnut shape of the beam was preserved even if the wavelength was changed.

Metrics