Abstract

The evanescent coupling of a 1.5 µm radius silicon microdisk with one or two Silicon-On-Insulator waveguides is studied. Thanks to the high refractive index contrast between Silica and Silicon materials, this very-small-diameter microdisk exhibits the highest quality factor measured in wavelength range from 1500 nm to 1600 nm. Coupled to a single monomode waveguide, the optical resonator behaves as a stop-band filter. Even if the microdisk is a largely multimode resonator, only its fundamental modes are efficiently excited. The filter’s transmission is measured for different gap between the waveguide and the resonator. The critical coupling is clearly observed and gives access to 1.63 nm linewidth. A 20 dB decrease of the transmission signal is also observed. Coupled to two waveguides, the resonator becomes a compact symmetric wavelength-demultiplexer. In this case, the optimal response comes from a compromise between the gap and the desired linewidth dropped in the second waveguide. Finally, our measurements are also compared to analytic models showing a good agreement especially for the critical gap prediction.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).
  2. G. Tosik, F. Gaffiot, Z. Lisik, I. O’Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198–200 (2004).
    [Crossref]
  3. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  4. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourbout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12, 1583–1591 (2004).
    [Crossref] [PubMed]
  5. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
    [Crossref]
  6. J. Niehusmann, A. Vorckel, and P. Aring Bolivar, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
    [Crossref]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  8. Q. Xu, V. R. Almeida, and M. Lipson, “Demonstration of high Raman gain in a submicrometer size silicon-on-insulator waveguide,” Opt. Lett. 30, 35–37 (2005).
    [Crossref] [PubMed]
  9. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
    [Crossref]
  10. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref] [PubMed]
  11. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
  12. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering gallery modes part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [Crossref]
  13. A. Yariv,“Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [Crossref]
  14. K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
    [Crossref]
  15. A. Morand, K. Phan-Huy, P. Benech, and Y. Désières, “Analytical study of the microdisk coupling with a waveguide based on the perturbation theory,” J. Lightwave Technol. 22, 827–832 (2004).
    [Crossref]
  16. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Effect of a layered environment on the complex natural frequencies of two dimensional WGM dielectric ring resonators,” J. Lightwave Technol. 20, 1563–1572 (2002).
    [Crossref]
  17. A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
    [Crossref]
  18. A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

2006 (1)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering gallery modes part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

2005 (2)

2004 (5)

2003 (2)

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

2002 (2)

2000 (2)

A. Yariv,“Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

1969 (1)

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

Almeida, V. R.

Amans, D.

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

Baets, R.

Barnett, B. C.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Beckx, S.

Benech, P.

A. Morand, K. Phan-Huy, P. Benech, and Y. Désières, “Analytical study of the microdisk coupling with a waveguide based on the perturbation theory,” J. Lightwave Technol. 22, 827–832 (2004).
[Crossref]

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Benson, T. M.

Bienstman, P.

Block, B. A.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Bogaerts, W.

Bolivar, P. Aring

Bolivar, P. H.

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Boriskina, S. V.

Bredillot, F.

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Cadien, K.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Désières, Y.

Dumon, P.

Fedeli, J-M.

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Gaffiot, F.

G. Tosik, F. Gaffiot, Z. Lisik, I. O’Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198–200 (2004).
[Crossref]

Gérard, J. M.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Hadji, E.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Hare, J.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Henschel, W.

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Ho, P. T.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

Huy, K. P.

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Huy, K. P..

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering gallery modes part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

Joneckis, L. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Kobrinsky, M. J.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Kurz, H.

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Laine, J-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Lefèvre-Seguin, V.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Lipson, M.

Lisik, Z.

G. Tosik, F. Gaffiot, Z. Lisik, I. O’Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198–200 (2004).
[Crossref]

List, S.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Luyssaert, B.

Marcatili, E. A. J.

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

Martin, B.

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering gallery modes part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

Mazen, F.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Mohammed, E.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Mönster, M.

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Morand, A.

A. Morand, K. Phan-Huy, P. Benech, and Y. Désières, “Analytical study of the microdisk coupling with a waveguide based on the perturbation theory,” J. Lightwave Technol. 22, 827–832 (2004).
[Crossref]

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Niehusmann, J.

Noé, P.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Nosich, A. I.

O’Connor, I.

G. Tosik, F. Gaffiot, Z. Lisik, I. O’Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198–200 (2004).
[Crossref]

Orucevic, F.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Phan-Huy, K.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Reshotko, M.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Robertson, F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Sewell, P.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Taillaert, D.

Tissafi-Drissi, F.

G. Tosik, F. Gaffiot, Z. Lisik, I. O’Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198–200 (2004).
[Crossref]

Tosik, G.

G. Tosik, F. Gaffiot, Z. Lisik, I. O’Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198–200 (2004).
[Crossref]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Van Campenhout, J.

Van Thourbout, D.

Verbert, J.

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

Vorckel, A.

Vörckel, A.

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Wiaux, V.

Wilson, R. A.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

Xu, Q.

Yariv, A.

A. Yariv,“Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

Young, I.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Zheng, J.-F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

Appl. Phys. Lett. (1)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

Electron. Lett. (2)

A. Yariv,“Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

G. Tosik, F. Gaffiot, Z. Lisik, I. O’Connor, and F. Tissafi-Drissi, “Power dissipation in optical and metallic clock distribution networks in new VLSI technologies,” Electron. Lett. 40, 198–200 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering gallery modes part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[Crossref]

Intel Technol. J. (1)

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Technol. J. 8, 129–142 (2004).

J. Lightwave Technol. (3)

Nature (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

A. Morand, K. P. Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji, and J-M. Fedeli, “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” in Silicon Photonics, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6125, 192–199 (2006).

K. P.. Huy, J. Verbert, F. Mazen, P. Noé, J. M. Gérard, E. Hadji, F. Orucevic, J. Hare, V. Lefèvre-Seguin, A. Morand, and P. Benech, “Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes,” in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE592559250O (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Description of the different layers used in a SOI photonic component. (b) SEM picture of a symmetric add-and-drop filter before the overlaying box is grown.

Fig. 2.
Fig. 2.

Power transmission in a stop band filter with a gap of 230 nm.(a) λres=1524.73 nm with m=13. (b) λres=1592.37 nm with m=12.

Fig. 3.
Fig. 3.

(a). Evolution of the wavelength resonance with the gap for the two azimuthal orders m and m+1. (b) Evolution of the quality factor with the gap for the two azimuthal orders m and m+1. (c) Evolution of the extinction ratio with the gap for the two azimuthal orders m and m+1.

Fig. 4.
Fig. 4.

(a). Power transmission from 1500 nm to 1600 nm with a gap of 230 nm (b) Power transmission of the first resonance peak.

Fig. 5.
Fig. 5.

(a). Evolution of the wavelength resonance with the gap for the azimuthal order m=13. (b) Evolution of the quality factor with the gap for the azimuthal order m=13. (c) Evolution of the extinction ratio on the R reflection with the gap for the azimuthal order m=13.

Tables (1)

Tables Icon

Table 1. Comparison between the measurements and calculated values obtained with the analytical method.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = γ c γ + i ( ω ω 0 ) γ c + γ + i ( ω ω 0 ) ,
T = γ c γ c + i ( ω ω 0 ) ,
R = i ( ω ω 0 ) γ c + i ( ω ω 0 ) ,

Metrics