Abstract

We investigate manufacturable photonic crystal (PhC) structures with a large photonic bandgap for TM-polarized light. Although such PhC structures have been the object of only a limited number of studies to date, they are of central importance for ultra fast all-optical switches relying on intersubband transitions in AlAsSb/InGaAs quantum wells, which support only TM polarization. In this paper, we numerically study substrate-type PhCs for which the two-dimensional approximation holds and three-dimensional photonic-crystal slabs, both with honeycomb lattice geometry. Large TM PBGs are obtained and optimized for both cases. Two types of PhC waveguides are proposed which are able to guide TM modes. Their unique properties show the potential to apply as waveguiding structures in all-optical switches.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34, 2604 (1998).
    [CrossRef]
  2. M. Nakazawa, “Tb/s OTDM technology,” Proc. 27 Eur. Conf. on Opt. Commun. 184 (2001).
  3. P. Cristea, Y. Fedoryshyn, and H. Jäckel, “Growth of AlAsSb/InGaAs MBE-layers for all optical switches,” J. Crystal Growth. 278, 544–547 (2005).
    [CrossRef]
  4. H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optcal switching at 1.3µm/1.55µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35, 1103 (1999).
    [CrossRef]
  5. A V Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  6. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  7. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  8. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  9. W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.
  10. G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.
  11. P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
    [CrossRef]
  12. D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134 (1996).
    [CrossRef]
  13. S. Rowson, A. Chelnokov, J. M. Lourtioz, and F. Carcenac, “Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared,” J. Appl. Phys. 83, 5061–5064 (1998).
    [CrossRef]
  14. J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
    [CrossRef]
  15. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8173–190 (2001).
    [CrossRef] [PubMed]
  16. M. Kafesaki, C. M. Soukoulis, and M. Agio, “Losses and transmission in two-dimensional slab photonic crystals,” Appl. Phys. 96, 4033–4038 (2004).
  17. C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv Mater. 4, 921–928 (2002).
  18. C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81, 235–244 (2005).
    [CrossRef]
  19. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
    [CrossRef]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  21. M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
    [CrossRef]
  22. M. Qiu, “Effective index method for heterostructures-slab-waveguide-based two-dimensional photonic crystals” Appl. Phys. Lett. 81, 1163–1165 (2002).
    [CrossRef]
  23. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
    [CrossRef]
  24. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, Y. Watanabe, K. Asakawa, and K. Inoue, “Guided modes of a width-reduced photonic-crystal slab line-defect waveguide with asymmetric cladding,” J. Lightwave Technol. 23, 2749–2755 (2005).
    [CrossRef]
  25. A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
    [CrossRef]

2005 (4)

P. Cristea, Y. Fedoryshyn, and H. Jäckel, “Growth of AlAsSb/InGaAs MBE-layers for all optical switches,” J. Crystal Growth. 278, 544–547 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81, 235–244 (2005).
[CrossRef]

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, Y. Watanabe, K. Asakawa, and K. Inoue, “Guided modes of a width-reduced photonic-crystal slab line-defect waveguide with asymmetric cladding,” J. Lightwave Technol. 23, 2749–2755 (2005).
[CrossRef]

2004 (2)

M. Kafesaki, C. M. Soukoulis, and M. Agio, “Losses and transmission in two-dimensional slab photonic crystals,” Appl. Phys. 96, 4033–4038 (2004).

A V Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2003 (1)

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

2002 (5)

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv Mater. 4, 921–928 (2002).

J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
[CrossRef]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
[CrossRef]

M. Qiu, “Effective index method for heterostructures-slab-waveguide-based two-dimensional photonic crystals” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

2001 (2)

2000 (1)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[CrossRef]

1999 (2)

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optcal switching at 1.3µm/1.55µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35, 1103 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[CrossRef]

1998 (2)

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34, 2604 (1998).
[CrossRef]

S. Rowson, A. Chelnokov, J. M. Lourtioz, and F. Carcenac, “Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared,” J. Appl. Phys. 83, 5061–5064 (1998).
[CrossRef]

1996 (1)

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134 (1996).
[CrossRef]

1992 (1)

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[CrossRef]

Agio, M.

M. Kafesaki, C. M. Soukoulis, and M. Agio, “Losses and transmission in two-dimensional slab photonic crystals,” Appl. Phys. 96, 4033–4038 (2004).

Asakawa, K.

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, Y. Watanabe, K. Asakawa, and K. Inoue, “Guided modes of a width-reduced photonic-crystal slab line-defect waveguide with asymmetric cladding,” J. Lightwave Technol. 23, 2749–2755 (2005).
[CrossRef]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

Bertho, D.

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134 (1996).
[CrossRef]

Bostan, C. G.

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv Mater. 4, 921–928 (2002).

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

Carcenac, F.

S. Rowson, A. Chelnokov, J. M. Lourtioz, and F. Carcenac, “Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared,” J. Appl. Phys. 83, 5061–5064 (1998).
[CrossRef]

Carlsson, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

Cassagne, D.

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134 (1996).
[CrossRef]

Chelnokov, A.

S. Rowson, A. Chelnokov, J. M. Lourtioz, and F. Carcenac, “Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared,” J. Appl. Phys. 83, 5061–5064 (1998).
[CrossRef]

Christ, A.

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

Cristea, P.

P. Cristea, Y. Fedoryshyn, and H. Jäckel, “Growth of AlAsSb/InGaAs MBE-layers for all optical switches,” J. Crystal Growth. 278, 544–547 (2005).
[CrossRef]

de Ridder, R M

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

de Ridder, R. M.

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv Mater. 4, 921–928 (2002).

Driessen, A.

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

Eich, M.

A V Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Erni, D.

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Fedoryshyn, Y.

P. Cristea, Y. Fedoryshyn, and H. Jäckel, “Growth of AlAsSb/InGaAs MBE-layers for all optical switches,” J. Crystal Growth. 278, 544–547 (2005).
[CrossRef]

Gadgil, V. J.

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

Georgiev, N.

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

Gopal, A. V.

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

Hopman, W C L.

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

Ikeda, N.

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, Y. Watanabe, K. Asakawa, and K. Inoue, “Guided modes of a width-reduced photonic-crystal slab line-defect waveguide with asymmetric cladding,” J. Lightwave Technol. 23, 2749–2755 (2005).
[CrossRef]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

Inoue, K.

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, Y. Watanabe, K. Asakawa, and K. Inoue, “Guided modes of a width-reduced photonic-crystal slab line-defect waveguide with asymmetric cladding,” J. Lightwave Technol. 23, 2749–2755 (2005).
[CrossRef]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

Ishikawa, H.

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

Jäckel, H.

P. Cristea, Y. Fedoryshyn, and H. Jäckel, “Growth of AlAsSb/InGaAs MBE-layers for all optical switches,” J. Crystal Growth. 278, 544–547 (2005).
[CrossRef]

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8173–190 (2001).
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8173–190 (2001).
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Jouanin, C.

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134 (1996).
[CrossRef]

Kafesaki, M.

M. Kafesaki, C. M. Soukoulis, and M. Agio, “Losses and transmission in two-dimensional slab photonic crystals,” Appl. Phys. 96, 4033–4038 (2004).

Kao, C. Y.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81, 235–244 (2005).
[CrossRef]

Kawai, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

Kawanishi, S.

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34, 2604 (1998).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Kuipers, L.

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Kuster, N.

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

Lourtioz, J. M.

S. Rowson, A. Chelnokov, J. M. Lourtioz, and F. Carcenac, “Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared,” J. Appl. Phys. 83, 5061–5064 (1998).
[CrossRef]

Matsuo, S.

J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

Misawa, H.

J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
[CrossRef]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Mizeikis, V.

J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
[CrossRef]

Mozume, T.

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optcal switching at 1.3µm/1.55µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35, 1103 (1999).
[CrossRef]

Nakamura, H.

Nakazawa, M.

M. Nakazawa, “Tb/s OTDM technology,” Proc. 27 Eur. Conf. on Opt. Commun. 184 (2001).

Neogi, A.

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optcal switching at 1.3µm/1.55µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35, 1103 (1999).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Osher, S.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81, 235–244 (2005).
[CrossRef]

Petrov, A V

A V Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Piché, M.

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[CrossRef]

Qiu, M.

M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
[CrossRef]

M. Qiu, “Effective index method for heterostructures-slab-waveguide-based two-dimensional photonic crystals” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

Robin, F.

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

Rowson, S.

S. Rowson, A. Chelnokov, J. M. Lourtioz, and F. Carcenac, “Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared,” J. Appl. Phys. 83, 5061–5064 (1998).
[CrossRef]

Selvaraja, S.

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Simoyama, T.

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

Soukoulis, C. M.

M. Kafesaki, C. M. Soukoulis, and M. Agio, “Losses and transmission in two-dimensional slab photonic crystals,” Appl. Phys. 96, 4033–4038 (2004).

Stark, G.

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

Sugimoto, Y.

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, Y. Watanabe, K. Asakawa, and K. Inoue, “Guided modes of a width-reduced photonic-crystal slab line-defect waveguide with asymmetric cladding,” J. Lightwave Technol. 23, 2749–2755 (2005).
[CrossRef]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Tanaka, Y.

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[CrossRef]

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[CrossRef]

Wada, O.

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optcal switching at 1.3µm/1.55µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35, 1103 (1999).
[CrossRef]

Watanabe, Y.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

Wüest, R.

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

Xu, Y.

J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
[CrossRef]

Yablonovitch, E.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81, 235–244 (2005).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Ye, J.

J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
[CrossRef]

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yoshida, H.

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optcal switching at 1.3µm/1.55µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35, 1103 (1999).
[CrossRef]

Appl. Phys. (1)

M. Kafesaki, C. M. Soukoulis, and M. Agio, “Losses and transmission in two-dimensional slab photonic crystals,” Appl. Phys. 96, 4033–4038 (2004).

Appl. Phys. B (1)

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81, 235–244 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

A V Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Qiu, “Effective index method for heterostructures-slab-waveguide-based two-dimensional photonic crystals” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

Electron. Lett. (1)

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optcal switching at 1.3µm/1.55µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35, 1103 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34, 2604 (1998).
[CrossRef]

A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume, and H. Ishikawa, “Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells,” IEEE J. Quantum Electron. 39, 299–305 (2003).
[CrossRef]

J. Appl. Phys. (2)

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
[CrossRef]

S. Rowson, A. Chelnokov, J. M. Lourtioz, and F. Carcenac, “Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared,” J. Appl. Phys. 83, 5061–5064 (1998).
[CrossRef]

J. Crystal Growth. (1)

P. Cristea, Y. Fedoryshyn, and H. Jäckel, “Growth of AlAsSb/InGaAs MBE-layers for all optical switches,” J. Crystal Growth. 278, 544–547 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Optoelectron. Adv Mater. (1)

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv Mater. 4, 921–928 (2002).

Opt. Commun. (1)

J. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (5)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[CrossRef]

M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
[CrossRef]

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134 (1996).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Proc. 27 Eur. Conf. on Opt. Commun. (1)

M. Nakazawa, “Tb/s OTDM technology,” Proc. 27 Eur. Conf. on Opt. Commun. 184 (2001).

Other (4)

W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers, and A. Driessen, “Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing,” presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13–17 Mar. 2006.

G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, and N. Kuster, “Extraction of the geometric parameters of photonics crystals using the effective-index method,” submitted to Opt. Lett.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Definition of honeycomb PhC lattice and comparison of maximum relative TM PBG width for triangular, square and honeycomb lattices.

Fig. 2.
Fig. 2.

Band diagram of honeycomb-type PhCs with r=0.24a. (a) Two-dimensional simulation, (b) Full three-dimensional simulation of air-bridge type PhC slab with thickness 0.45a, projected band diagram.

Fig. 3.
Fig. 3.

Three-dimensional simulation of TM PBG in air membrane. (a) TM gap map, (b) Gap size (normalized to midgap frequency) versus slab thickness.

Fig. 4.
Fig. 4.

Schematic representation of the designed linear-defect PhCWs. (a) Missing-hole waveguide, created by removing two rows of holes in the Γ-K direction. (b) Additional-hole waveguide, created by adding one row of holes with the same radii in the Γ-K direction.

Fig. 5.
Fig. 5.

(a). Two-dimensional computation of the dispersion relation of missing-hole PhCWs in the Γ-K direction, (b). Horizontal Ez field cross-section of the guided modes.

Fig. 6.
Fig. 6.

(a). Two-dimensional computation of the dispersion relation of additional-hole PhCWs in the Γ-K direction, (b). Guided modes for various defect hole radii (bulk radius 0.24a).

Fig. 7.
Fig. 7.

Three-dimensional simulation of projected band structures of air membrane slab PhCWs in the Γ-K direction, showing the odd-symmetry modes. (a) Missing-hole PhCW (inset: magnified view of gap region) (b) Additional-hole linear defect.

Metrics