Abstract

A new formulation describing the interference term of a two beam interferometer with unequal Gaussian spectra propagating in different dispersive media is provided by defining a composite standard deviation and a composite center frequency of the interfering spectra. This formulation is generalized to arbitrary spectra by decomposing each spectrum into a linear composition of Gaussian distributions. The effective phase and group delays indicate the effect of the unequal spectral distributions and the dispersive media. An effective coherence length is derived, different than the coherence lengths of the interfering fields. The accuracy of the new formulation is proven experimentally by using optical coherence tomography systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Michelson, "Interferometer," Am. J. Sci. 3, 120 (1881).
  2. R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, "New analysis of the interferometer obervations of Dayton C. Miller," Rev. Mod. Phys. 27, 167-178 (1955).
    [CrossRef]
  3. R. P. Patten, "Michelson interferometer as a remote gauge," Appl. Opt. 10, 2717-2721 (1971).
    [CrossRef] [PubMed]
  4. P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
    [CrossRef]
  5. M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
    [CrossRef] [PubMed]
  6. T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsukaa, "A white-light Michelson interferometer in the visible and near infrared regions," Rev. Sci. Instrum. 69, 2854-2858 (1998).
    [CrossRef]
  7. K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
    [CrossRef] [PubMed]
  8. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum superpositions of a mirror," Phys. Rev. Lett. 91, 130401-130404 (2003).
    [CrossRef] [PubMed]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  10. M. C. Booth, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Polarization-sensitive quantum-optical coherence tomography," Phys. Rev. A 69, 043815- (2004).
    [CrossRef]
  11. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. v. Gemert, and T. G. v. Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
    [CrossRef] [PubMed]
  12. D. L. Marks, and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef] [PubMed]
  13. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
    [CrossRef] [PubMed]
  14. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
    [CrossRef] [PubMed]
  15. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  16. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  17. I. Hartl, X. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  18. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  19. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mm," Opt. Lett. 29, 2846-2848 (2004).
    [CrossRef]
  20. R. L. Forward, "Wideband laser-interferometer gravitational-radiation experiment," Phys. Rev. D 17, 379-390 (1978).
    [CrossRef]
  21. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
  22. K. J. Kuhn, Laser Engeering (Prentice-Hall, Inc., Upper Saddle River, 1998).
  23. A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
    [CrossRef]
  24. J. S. Olafsen, and J. S. Urbach, "Velocity distributions and density fluctuations in a granular gas," Phys. Rev. E 60, 2468-2471 (1999).
    [CrossRef]
  25. A. E. Siegman, Laser (1986).
  26. B. E. Bouma, and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).
  27. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Un-Arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998).
    [CrossRef] [PubMed]
  28. Z. Hu, and A. M. Rollins, "Quasi-telecentric optical design of a microscope-compatible OCT scanner," Opt. Express 13, 6407-6415 (2005).
    [CrossRef] [PubMed]

2005 (2)

2004 (4)

2003 (3)

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum superpositions of a mirror," Phys. Rev. Lett. 91, 130401-130404 (2003).
[CrossRef] [PubMed]

2002 (1)

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
[CrossRef] [PubMed]

2001 (2)

1999 (1)

J. S. Olafsen, and J. S. Urbach, "Velocity distributions and density fluctuations in a granular gas," Phys. Rev. E 60, 2468-2471 (1999).
[CrossRef]

1998 (3)

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Un-Arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998).
[CrossRef] [PubMed]

A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
[CrossRef]

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsukaa, "A white-light Michelson interferometer in the visible and near infrared regions," Rev. Sci. Instrum. 69, 2854-2858 (1998).
[CrossRef]

1995 (1)

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1981 (1)

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

1978 (1)

R. L. Forward, "Wideband laser-interferometer gravitational-radiation experiment," Phys. Rev. D 17, 379-390 (1978).
[CrossRef]

1971 (1)

1955 (1)

R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, "New analysis of the interferometer obervations of Dayton C. Miller," Rev. Mod. Phys. 27, 167-178 (1955).
[CrossRef]

1881 (1)

A. A. Michelson, "Interferometer," Am. J. Sci. 3, 120 (1881).

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. v. Gemert, and T. G. v. Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Arakawa, M.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsukaa, "A white-light Michelson interferometer in the visible and near infrared regions," Rev. Sci. Instrum. 69, 2854-2858 (1998).
[CrossRef]

Bajraszewski, T.

Becker, P.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Berisha, F.

Boppart, S. A.

D. L. Marks, and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

Bouwmeester, D.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum superpositions of a mirror," Phys. Rev. Lett. 91, 130401-130404 (2003).
[CrossRef] [PubMed]

Buchler, B. C.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chapman, M. S.

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z.

Chudoba, C.

Dorenwendt, K.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ebeling, G.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Ekstrom, C. R.

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

Faber, D. J.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. v. Gemert, and T. G. v. Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Forward, R. L.

R. L. Forward, "Wideband laser-interferometer gravitational-radiation experiment," Phys. Rev. D 17, 379-390 (1978).
[CrossRef]

Fuji, T.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsukaa, "A white-light Michelson interferometer in the visible and near infrared regions," Rev. Sci. Instrum. 69, 2854-2858 (1998).
[CrossRef]

Fujimoto, J. G.

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mm," Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

I. Hartl, X. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ghanta, R. K.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hammond, T. D.

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

Hartl, I.

Hattori, T.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsukaa, "A white-light Michelson interferometer in the visible and near infrared regions," Rev. Sci. Instrum. 69, 2854-2858 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hooper, B. A.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. v. Gemert, and T. G. v. Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Hsiung, P.

Hu, Z.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ko, T. H.

Kuerti, G.

R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, "New analysis of the interferometer obervations of Dayton C. Miller," Rev. Mod. Phys. 27, 167-178 (1955).
[CrossRef]

Kulkarni, M. D.

Lam, P. K.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lauer, R.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Leitgeb, R. A.

Leone, F. C.

R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, "New analysis of the interferometer obervations of Dayton C. Miller," Rev. Mod. Phys. 27, 167-178 (1955).
[CrossRef]

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Loreto, V.

A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
[CrossRef]

Lucas, W.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Marconi, U. M. B.

A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
[CrossRef]

Marks, D. L.

D. L. Marks, and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

Marshall, W.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum superpositions of a mirror," Phys. Rev. Lett. 91, 130401-130404 (2003).
[CrossRef] [PubMed]

McClelland, D. E.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
[CrossRef] [PubMed]

McCuskey, S. W.

R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, "New analysis of the interferometer obervations of Dayton C. Miller," Rev. Mod. Phys. 27, 167-178 (1955).
[CrossRef]

McKenzie, K.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
[CrossRef] [PubMed]

Michelson, A. A.

A. A. Michelson, "Interferometer," Am. J. Sci. 3, 120 (1881).

Mik, E. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. v. Gemert, and T. G. v. Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Nakatsukaa, H.

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsukaa, "A white-light Michelson interferometer in the visible and near infrared regions," Rev. Sci. Instrum. 69, 2854-2858 (1998).
[CrossRef]

Nelson, J. S.

Nishizawa, N.

Olafsen, J. S.

J. S. Olafsen, and J. S. Urbach, "Velocity distributions and density fluctuations in a granular gas," Phys. Rev. E 60, 2468-2471 (1999).
[CrossRef]

Patten, R. P.

Penrose, R.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum superpositions of a mirror," Phys. Rev. Lett. 91, 130401-130404 (2003).
[CrossRef] [PubMed]

Petri, A.

A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
[CrossRef]

Pritchard, D. E.

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

Probst, R.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Puglisi, A.

A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rademacher, H.-J.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Ranka, J. K.

Reim, G.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Rollins, A. M.

Rubenstein, R. A.

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

Schmetterer, L.

Schmiedmayer, J.

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Seyfried, P.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Shaddock, D. A.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
[CrossRef] [PubMed]

Shankland, R. S.

R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, "New analysis of the interferometer obervations of Dayton C. Miller," Rev. Mod. Phys. 27, 167-178 (1955).
[CrossRef]

Siegert, H.

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

Simon, C.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum superpositions of a mirror," Phys. Rev. Lett. 91, 130401-130404 (2003).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Un-Arunyawee, R.

Urbach, J. S.

J. S. Olafsen, and J. S. Urbach, "Velocity distributions and density fluctuations in a granular gas," Phys. Rev. E 60, 2468-2471 (1999).
[CrossRef]

Vulpiani, A.

A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
[CrossRef]

Wang, Y.

Wehinger, S.

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

Windeler, R. S.

Wojtkowski, M.

Yazdanfar, S.

Zhang, J.

Zhao, Y.

Am. J. Sci. (1)

A. A. Michelson, "Interferometer," Am. J. Sci. 3, 120 (1881).

Appl. Opt. (1)

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. D (1)

R. L. Forward, "Wideband laser-interferometer gravitational-radiation experiment," Phys. Rev. D 17, 379-390 (1978).
[CrossRef]

Phys. Rev. E (1)

J. S. Olafsen, and J. S. Urbach, "Velocity distributions and density fluctuations in a granular gas," Phys. Rev. E 60, 2468-2471 (1999).
[CrossRef]

Phys. Rev. Lett. (7)

A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani, "Clustering and non-Gaussian behavior in granular matter," Phys. Rev. Lett. 81, 3848-3851 (1998).
[CrossRef]

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. v. Gemert, and T. G. v. Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004).
[CrossRef] [PubMed]

D. L. Marks, and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H. Siegert, "Absolute measurement of the (200) lattice plane spacing in a Silicon Crystal," Phys. Rev. Lett. 46, 1540-1543 (1981).
[CrossRef]

M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, "Optics and interferometry with Na2 Molecules," Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef] [PubMed]

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, "Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection," Phys. Rev. Lett. 88, 231102-231101 (2002).
[CrossRef] [PubMed]

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards Quantum superpositions of a mirror," Phys. Rev. Lett. 91, 130401-130404 (2003).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, "New analysis of the interferometer obervations of Dayton C. Miller," Rev. Mod. Phys. 27, 167-178 (1955).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsukaa, "A white-light Michelson interferometer in the visible and near infrared regions," Rev. Sci. Instrum. 69, 2854-2858 (1998).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (5)

M. C. Booth, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Polarization-sensitive quantum-optical coherence tomography," Phys. Rev. A 69, 043815- (2004).
[CrossRef]

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).

K. J. Kuhn, Laser Engeering (Prentice-Hall, Inc., Upper Saddle River, 1998).

A. E. Siegman, Laser (1986).

B. E. Bouma, and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1.
Fig.1.

Envelopes (coherence length or axial resolution) of the measured interferograms. Dash line is with filter in reference arm. The solid line is without filter.

Fig. 2.
Fig. 2.

Effective coherence length versus the spectral narrowing: The ratio is defined as 34 nm (at 1292 nm) divided by a variable spectral width. Dashed line: two spectra are identical and the width variations are the same for both spectra; Solid line: one of the two spectral widths is fixed at 34 nm and the other varies at the center wavelength 1313.6 nm. a: no filter, cross indicates the measurement of 19 µm, while the calculation is 21.6 µm; b: with filter: down triangle indicates the measurement of 86.5 µm, while the calculation is 85.5 µm.

Fig. 3
Fig. 3

The Spectral Bandwidth Ratio is defined as: 53.27 nm (at 1319.4 nm) divided by a variable spectral width for curves marked by cross, star and plus symbols and 56.36 nm (at 1322.3 nm) divided by a variable spectral width for the curves marked by triangle and solid dot symbols. For the star, plus and solid dot curves, one of the spectral widths vary. For the triangle and cross curves, both spectra are identical and both spectral widths vary the same. A: sample spectrum (14.42 µm); B: interference (14.06 µm), the cross indicates the measurement (14.10 µm) is slightly longer; C: reference spectrum (13.69 µm).

Tables (1)

Tables Icon

Table I. Center wavelengths and axial resolutions

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( ω , t ) = i n a i e ( ω ω i ) 2 4 σ i 2 e j ( ω t ϕ i ) .
I ( ω ) = Ψ ( ω , t ) · Ψ * ( ω , t )
= i = j n a i 2 e ( ω ω i ) 2 2 σ i 2 + i j n a i a j e ( ω ω i ) 2 4 σ i 2 ( ω ω j ) 2 4 σ j 2 e Δ ϕ ij .
S ( ω , Δ ϕ ) = A e ( ω ω 1 ) 2 4 σ 1 2 ( ω ω 2 ) 2 4 σ 2 2 e j Δ ϕ .
S ( ω , Δ ϕ ) = Ae ( ω 1 ω 2 ) 2 4 ( σ 1 2 + σ 2 2 ) e ( ω ω ¯ ) 2 2 σ ¯ 2 e j Δ ϕ .
σ ¯ 2 = 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ,
ω ¯ = 1 2 σ ¯ 2 ( ω 1 σ 1 2 + ω 2 σ 2 2 ) .
ϕ 1 ( ω ) = β 1 ( ω 1 ) ( 2 l 1 ) + β 1 ( ω 1 ) ( ω ω 1 ) ( 2 l 1 ) + 1 2 β 1 ( ω 1 ) ( ω ω 1 ) 2 ( 2 L ) ,
ϕ 2 ( ω ) = β 2 ( ω 2 ) ( 2 l 2 ) + β ( ω 2 ) ( ω ω 2 ) ( 2 l 2 ) + 1 2 β 2 ( ω 2 ) ( ω ω 2 ) 2 ( 2 L ) ,
Δ ϕ ( ω ) = ϕ 1 ( ω ) ϕ 2 ( ω ) .
Δ ϕ ( ω ) = ϖ Δ τ p + Δ ω σ ¯ 2 ( β 1 ( ω 1 ) l 1 σ 2 2 β 2 ( ω 2 ) l 2 σ 1 2 ) + ( ω ϖ ) Δ τ g .
+ L { β 1 ( ω 1 ) ( ω ω 1 ) 2 β 2 ( ω 2 ) ( ω ω 2 ) 2 }
Δ τ p = 2 β 1 ( ω 1 ) l 1 β 2 ( ω 2 ) l 2 ϖ ,
Δ τ g = 2 β 1 ( ω 1 ) l 1 2 β 2 ( ω 2 ) l 2 .
Δ ϕ ( ω ) = Δ β L ( ω ϖ ) 2 + ( ω ϖ ) Δ τ g + ϖ Δ τ p .
Δ τ p = Δ τ P + 2 L [ Δ β ( ϖ ω 1 ) β 2 ( ω 2 ) Δ ω ]
L ϖ [ Δ β ϖ 2 β 1 ( ω 1 ) ω 1 2 + β 2 ( ω 2 ) ω 2 2 ] + Δ ω ϖ σ ¯ 2 ( β 1 ( ω 1 ) l 1 σ 2 2 β 2 ( ω 2 ) l 2 σ 1 2 ) ,
Δ τ g = Δ τ g + 2 L [ Δ β ( ϖ ω 1 ) β 2 ( ω 2 ) Δ ω ] .
S ( ω , Δ ϕ ) = e ( ω 1 ω 2 ) 2 4 ( σ 1 2 + σ 2 2 ) e j ϖ Δ τ p j ( ω ϖ ) Δ τ g ( 1 2 σ ¯ 2 + j Δ β L ) ( ω ω ¯ ) 2 .
I real { [ 1 + σ ¯ 4 ( Δ β 2 L ) 2 ] 1 4 e ( ω 1 ω 2 ) 2 4 ( σ 1 2 + σ 2 2 )
e Δ τ g 2 2 [ 1 σ ¯ 2 + σ ¯ 2 ( Δ β 2 L ) 2 ] e j { ϖ Δ τ p + 1 2 tan 1 ( σ ¯ 2 Δ β 2 L ) Δ τ g 2 σ ¯ 2 ( Δ β 2 L ) 2 [ 1 σ ¯ 2 + σ ¯ 2 ( Δ β 2 L ) 2 ] } } .
Δ τ g _ half = 1 + σ ¯ 4 ( Δ β " 2 L ) 2 2 ln ( 2 ) σ ¯ .
I real { e ( ω 1 ω 2 ) 2 4 ( σ 1 2 + σ 2 2 ) e σ ¯ 2 Δ τ g 2 2 e j ϖ Δ τ p } .
l c = 2 ln 2 π 1 2 [ ( λ 1 2 Δ λ 1 ) 2 + ( λ 2 2 Δ λ 2 ) 2 ]
= ( l c 1 ) 2 + ( l c 2 ) 2 2 .

Metrics