Abstract

We demonstrate and characterize volume holographic recording in ZrO2 nanoparticle-dispersed acrylate photopolymer films that have very low scattering loss. More than thirty-fold reduction in the scattering coefficient, as compared with those of previously reported TiO2 nanoparticle-dispersed photopolymers, is achieved. It is shown that the refractive index modulation as high as 5.3×10-3, together with substantive photopolymerization-shrinkage suppression, is obtained at the nanoparticle concentration of 15 vol.%. Dependences of nanoparticle concentration and grating spacing on the refractive index modulation are also investigated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc. SPIE 2405, 2- 23(1995).
    [CrossRef]
  2. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224(1998).
    [CrossRef]
  3. V. A. Barachevskii, "Photopolymerizable recording media for three-dimensional holographic optical memory," High. Energy Chem. 40, 131-141(2006).
    [CrossRef]
  4. W. J. Gambogi, A. MWeber, and T. J. Trout, "Advances and applications of DuPont holographic photopolymers, SPIE 2043, 2-13(1993).
  5. H.-Y. S. Li and D. Psaltis, "Three-dimensional holographic disks," Appl. Opt. 33, 3764-3774(1994).
    [CrossRef] [PubMed]
  6. S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A 3, 72-81(2001).
    [CrossRef]
  7. N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123(2002).
    [CrossRef]
  8. Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410- 412(2003).
    [CrossRef]
  9. N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," Jpn. J. Appl. Phys. 42, L927-L929(2003).
    [CrossRef]
  10. N. Suzuki and Y. Tomita, "Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%," Appl. Opt. 43, 2125-2129(2004).
    [CrossRef] [PubMed]
  11. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, "Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage," Appl. Phys. Lett. 88, 071103-1-1071103-3(2006).
    [CrossRef]
  12. Y. Tomita, N. Suzuki, and K. Chikama, "Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers," Opt. Lett. 30, 839-841(2005).
    [CrossRef] [PubMed]
  13. N. Suzuki and Y. Tomita, "Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers," Appl. Phys. Lett. 88, 011105-1-01105-3(2006).
    [CrossRef]
  14. Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, "Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film," Opt. Lett. 31, 1402-1404(2006).
    [CrossRef] [PubMed]
  15. Y. Tomita, N. Suzuki, K. Furushima, and Y. Endoh, "Volume holographic recording based on mass transport of nanoparticles doped in methacrylate photopolymers," Proc. SPIE 5939, 593909-1-593909-9(2005).
  16. C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
    [CrossRef]
  17. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  18. W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233(1959).
  19. P. W. Oliveira, H. Krug, P. M¨uller, and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials," Mater. Res. Soc. Symp. Proc. 435, 553- 558(1996).
    [CrossRef]
  20. F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
    [CrossRef]
  21. K. P. Jayadevan and T.Y. Tseng, "Oxide nanoparticles," in Encyclopedia of Nanoscience and Nanotechnology, H.S. Nalwa, ed. (American Scientific Publishers, Stevenson Ranch, Calif., 2004), Vol.8, pp.333-376.
  22. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).
  23. E.S. Gyul’nazarov, T.N. Smirnova, D.V. Surovtsev, and E.A. Tikhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectroscopy 51, 111-117(1989).
  24. H. Krug and H. Schumidt, "Organic-inorganic nanocomposites for micro optical applications," New J. Chem. 18, 1125-1134(1994).
  25. J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114(2000).
    [CrossRef]
  26. J. Qi, L. Li,M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450(2004).
    [CrossRef]
  27. P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492(2001).
    [CrossRef]
  28. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
    [CrossRef]

2006 (3)

V. A. Barachevskii, "Photopolymerizable recording media for three-dimensional holographic optical memory," High. Energy Chem. 40, 131-141(2006).
[CrossRef]

F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
[CrossRef]

Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, "Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film," Opt. Lett. 31, 1402-1404(2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

N. Suzuki and Y. Tomita, "Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%," Appl. Opt. 43, 2125-2129(2004).
[CrossRef] [PubMed]

J. Qi, L. Li,M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450(2004).
[CrossRef]

2003 (2)

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410- 412(2003).
[CrossRef]

N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," Jpn. J. Appl. Phys. 42, L927-L929(2003).
[CrossRef]

2002 (1)

N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123(2002).
[CrossRef]

2001 (2)

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A 3, 72-81(2001).
[CrossRef]

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492(2001).
[CrossRef]

2000 (1)

1998 (2)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
[CrossRef]

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224(1998).
[CrossRef]

1996 (1)

P. W. Oliveira, H. Krug, P. M¨uller, and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials," Mater. Res. Soc. Symp. Proc. 435, 553- 558(1996).
[CrossRef]

1995 (1)

R. A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc. SPIE 2405, 2- 23(1995).
[CrossRef]

1994 (2)

H.-Y. S. Li and D. Psaltis, "Three-dimensional holographic disks," Appl. Opt. 33, 3764-3774(1994).
[CrossRef] [PubMed]

H. Krug and H. Schumidt, "Organic-inorganic nanocomposites for micro optical applications," New J. Chem. 18, 1125-1134(1994).

1993 (1)

W. J. Gambogi, A. MWeber, and T. J. Trout, "Advances and applications of DuPont holographic photopolymers, SPIE 2043, 2-13(1993).

1989 (1)

E.S. Gyul’nazarov, T.N. Smirnova, D.V. Surovtsev, and E.A. Tikhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectroscopy 51, 111-117(1989).

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).

1959 (1)

W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233(1959).

Barachevskii, V. A.

V. A. Barachevskii, "Photopolymerizable recording media for three-dimensional holographic optical memory," High. Energy Chem. 40, 131-141(2006).
[CrossRef]

Bastiaansen, C. W. M.

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
[CrossRef]

Broer, D. J.

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Calvo, M. L.

F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
[CrossRef]

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492(2001).
[CrossRef]

Cheben, P.

F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
[CrossRef]

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492(2001).
[CrossRef]

Chikama, K.

Crawford, G. P.

J. Qi, L. Li,M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450(2004).
[CrossRef]

De Sarkar, M.

J. Qi, L. Li,M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450(2004).
[CrossRef]

del Monte, F.

F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
[CrossRef]

Dhar, L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
[CrossRef]

Eichler, H. J.

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A 3, 72-81(2001).
[CrossRef]

Endoh, Y.

Escuti, M. J.

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Furushima, K.

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224(1998).
[CrossRef]

W. J. Gambogi, A. MWeber, and T. J. Trout, "Advances and applications of DuPont holographic photopolymers, SPIE 2043, 2-13(1993).

Gyul’nazarov, E.S.

E.S. Gyul’nazarov, T.N. Smirnova, D.V. Surovtsev, and E.A. Tikhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectroscopy 51, 111-117(1989).

Heller, W.

W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233(1959).

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).

Krug, H.

P. W. Oliveira, H. Krug, P. M¨uller, and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials," Mater. Res. Soc. Symp. Proc. 435, 553- 558(1996).
[CrossRef]

H. Krug and H. Schumidt, "Organic-inorganic nanocomposites for micro optical applications," New J. Chem. 18, 1125-1134(1994).

Lawrence, J. R.

Lessard, R. A.

R. A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc. SPIE 2405, 2- 23(1995).
[CrossRef]

Li, H.-Y. S.

Li, L.

J. Qi, L. Li,M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450(2004).
[CrossRef]

Loos, J.

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Manivannan, G.

R. A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc. SPIE 2405, 2- 23(1995).
[CrossRef]

Mart´inez, O.

F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
[CrossRef]

Nishibiraki, H.

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410- 412(2003).
[CrossRef]

Nohara, Y.

Nussbaumer, R.

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Oliveira, P. W.

P. W. Oliveira, H. Krug, P. M¨uller, and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials," Mater. Res. Soc. Symp. Proc. 435, 553- 558(1996).
[CrossRef]

Orlic, S.

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A 3, 72-81(2001).
[CrossRef]

Psaltis, D.

Qi, J.

J. Qi, L. Li,M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450(2004).
[CrossRef]

Rodrigo, J. A.

F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
[CrossRef]

S´anchez, C.

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Schilling, H. M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
[CrossRef]

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224(1998).
[CrossRef]

Schnoes, M. G.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
[CrossRef]

Schumidt, H.

H. Krug and H. Schumidt, "Organic-inorganic nanocomposites for micro optical applications," New J. Chem. 18, 1125-1134(1994).

Sheridan, J. T.

Smirnova, T.N.

E.S. Gyul’nazarov, T.N. Smirnova, D.V. Surovtsev, and E.A. Tikhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectroscopy 51, 111-117(1989).

Surovtsev, D.V.

E.S. Gyul’nazarov, T.N. Smirnova, D.V. Surovtsev, and E.A. Tikhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectroscopy 51, 111-117(1989).

Suzuki, N.

Tikhonov, E.A.

E.S. Gyul’nazarov, T.N. Smirnova, D.V. Surovtsev, and E.A. Tikhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectroscopy 51, 111-117(1989).

Tomita, Y.

Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, "Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film," Opt. Lett. 31, 1402-1404(2006).
[CrossRef] [PubMed]

Y. Tomita, N. Suzuki, and K. Chikama, "Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers," Opt. Lett. 30, 839-841(2005).
[CrossRef] [PubMed]

N. Suzuki and Y. Tomita, "Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%," Appl. Opt. 43, 2125-2129(2004).
[CrossRef] [PubMed]

N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," Jpn. J. Appl. Phys. 42, L927-L929(2003).
[CrossRef]

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410- 412(2003).
[CrossRef]

N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123(2002).
[CrossRef]

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224(1998).
[CrossRef]

Ulm, S.

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A 3, 72-81(2001).
[CrossRef]

van Heesch, C.

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224(1998).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
[CrossRef]

Adv. Funct. Mater. (1)

C. S´anchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-
[CrossRef]

Adv. Mater. (2)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224(1998).
[CrossRef]

F. del Monte, O. Mart´ınez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017(2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492(2001).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339(1998).
[CrossRef]

N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123(2002).
[CrossRef]

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410- 412(2003).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).

High. Energy Chem. (1)

V. A. Barachevskii, "Photopolymerizable recording media for three-dimensional holographic optical memory," High. Energy Chem. 40, 131-141(2006).
[CrossRef]

J. Appl. Phys. (1)

J. Qi, L. Li,M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450(2004).
[CrossRef]

J. Appl. Spectroscopy (1)

E.S. Gyul’nazarov, T.N. Smirnova, D.V. Surovtsev, and E.A. Tikhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectroscopy 51, 111-117(1989).

J. Opt. A (1)

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A 3, 72-81(2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," Jpn. J. Appl. Phys. 42, L927-L929(2003).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

P. W. Oliveira, H. Krug, P. M¨uller, and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials," Mater. Res. Soc. Symp. Proc. 435, 553- 558(1996).
[CrossRef]

New J. Chem. (1)

H. Krug and H. Schumidt, "Organic-inorganic nanocomposites for micro optical applications," New J. Chem. 18, 1125-1134(1994).

Opt. Lett. (2)

Proc. SPIE (1)

R. A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc. SPIE 2405, 2- 23(1995).
[CrossRef]

Rec. Chem. Prog. (1)

W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233(1959).

SPIE (1)

W. J. Gambogi, A. MWeber, and T. J. Trout, "Advances and applications of DuPont holographic photopolymers, SPIE 2043, 2-13(1993).

Other (5)

Y. Tomita, N. Suzuki, K. Furushima, and Y. Endoh, "Volume holographic recording based on mass transport of nanoparticles doped in methacrylate photopolymers," Proc. SPIE 5939, 593909-1-593909-9(2005).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, "Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage," Appl. Phys. Lett. 88, 071103-1-1071103-3(2006).
[CrossRef]

N. Suzuki and Y. Tomita, "Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers," Appl. Phys. Lett. 88, 011105-1-01105-3(2006).
[CrossRef]

K. P. Jayadevan and T.Y. Tseng, "Oxide nanoparticles," in Encyclopedia of Nanoscience and Nanotechnology, H.S. Nalwa, ed. (American Scientific Publishers, Stevenson Ranch, Calif., 2004), Vol.8, pp.333-376.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

TEM image of ZrO2 nanoparticles deposited on carbon-coated grids. Note that darker portions in the image correspond to ZrO2 nanoparticles.

Fig. 2.
Fig. 2.

(a) Photograph of a hologram under white light illumination from a fluorescent lamp. (b) Photograph of the same hologram viewed from the top.

Fig. 3.
Fig. 3.

Spectral dependence of the turbidity τ for samples without (solid curve) and with (dotted curve) the ZrO2 nanoparticle dispersion. The nanoparticle-dispersed sample contains ZrO2 nanoparticles of 15 vol.%. No initiator was doped in both samples. The dash-dotted curve corresponds to the least-squares fit of the Rayleigh scattering formula to the data.

Fig. 4.
Fig. 4.

Recording dynamics of Δn for samples with various concentrations of ZrO2 nanoparticles. The estimated effective thicknesses were 45, 23, 16, 25 and 52 µm for samples without and with ZrO2 nanoparticle dispersion of 5, 10, 15 and 20 vol.%, respectively.

Fig. 5.
Fig. 5.

ZrO2 nanoparticle concentration vs. the saturated Δn at a grating spacing of 1.0 µm and several recording intensities (×: 1mW/cm2, □: 10mW/cm2, ○: 100mW/cm2).

Fig. 6.
Fig. 6.

TEM image parallel to the surface of a hologram recorded at a grating spacing of 1.0 µm. Note that black portions in the image correspond to ZrO2 nanoparticles of 15 vol.% dispersion.

Fig. 7.
Fig. 7.

Grating-spacing dependence of the saturated Δn for the sample with the ZrO2 nanoparticle concentration of 15 vol.% at several recording intensities (×: 1mW/cm2, □: 10mW/cm2, ○: 100mW/cm2)

Tables (1)

Tables Icon

Table 1. Saturated Δn and recording sensitivities S and S* at a grating spacing of 1.0 µm and at several recording intensities for samples with several concentrations of the initiator.

Metrics