Abstract

In frequency ranges above 200–300 GHz, the second slowest relaxation in the optical response (such as carrier- cooling relaxation having a time constant of 1–2 ps) of a semiconductor optical amplifier inside the conventional delayed-interference signal-wavelength converter (DISC) scheme is thought to start the distortion of all-optically gated waveforms. In this work, we design a digital optical-spectrum-synthesizer block that is part of the expanded DISC scheme. Our numerically calculated spectra, waveforms, and eye diagrams with assumed pseudorandom digital data pulses indicate that this synthesizer significantly removes strong distortion from the gated waveforms. A signal-to-noise ratio of 20 dB was obtained from our random-data eye diagram, providing proof of effectiveness in principle.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A Tera-hertz optical asymmetric demultiplexer (TOAD)," IEEE Photonics Technol. Lett. 5, 767-790 (1993).
    [CrossRef]
  2. K. Tajima, "All-optical switch with switch-off time unrestricted by carrier lifetime," Jpn. J. Appl. Phys. 32, L1746-1749 (1993).
    [CrossRef]
  3. Y. Ueno, S. Nakamura, and K. Tajima, "Record low-power all-optical semiconductor switch operation at ultrafast repetition rates above the carrier cutoff frequency," Opt. Lett. 23, 1846-1848 (1998).
    [CrossRef]
  4. K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000).
    [CrossRef]
  5. Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573-2589 (2002). http://josab.osa.org/abstract.cfm?id=70413
    [CrossRef]
  6. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A.M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, "Error-free 320-Gb/s SOA-based wavelength conversion using optical filtering," Optical Fiber Communication Conference (OFC 2006), March 5-10, 2006, Anaheim, PDP28.
  7. S. Nakamura, Y. Ueno, and K. Tajima, "Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch," Optical Fiber Communication Conference (OFC 2002), March 17-22, 2002, Anaheim, Post-deadline Paper FD3.
  8. Y. Ueno, S. Nakamura, and K. Tajima, "Spectral phase-locking in ultrafast all-optical Mach-Zehnder-type semiconductor wavelength converters," Jpn. J. Appl. Phys. 38, L1243-1245 (1999).
    [CrossRef]
  9. J. Leuthold, D.M. Marom, S. Cabot, J.J. Jacques, R. Ryf, and C.R. Giles, "All-optical wavelength conversion using a pulse reformatting optical filter," J. Lightwave Technol. 22, 186-192 (2004).
    [CrossRef]
  10. S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric-Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
    [CrossRef]
  11. Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, "Short pulse gain saturation in InGaAsP diode laser amplifiers," IEEE Photonics Technol. Lett. 2, 711-713 (1990).
    [CrossRef]
  12. J. Mork and A. Mecozzi, "Theory of the ultrafast optical response of active semiconductor waveguides," J. Opt. Soc. Am. B 13, 1803-1816 (1996). http://josab.osa.org/abstract.cfm?id=33873
    [CrossRef]
  13. J. Mork, T.W. Berg, M.L. Nielsen, and A.V. Uskov, "The role of fast carrier dynamics in SOA-based devices," IEICE Trans. Electron. E87-C, 1126-1132 (2004).
  14. M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
    [CrossRef] [PubMed]
  15. Y. Ueno, M. Toyoda, R. Suzuki, and Y. Nagasue, "Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random-amplitude-noise suppression," Optics Express 14, 348-360 (2006).
    [CrossRef] [PubMed]
  16. K. Takiguchi, T. Kominato, H. Takahashi, T. Shibata, and K. Okamoto, "Flexible pulse waveform generation using a silica waveguide based spectrum synthesis circuit," Optical Fiber Communication Conference (OFC 2004), Feb. 22-24, 2004, Los Angeles, CA, USA, paper no. TuI5.

2006 (2)

M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Y. Ueno, M. Toyoda, R. Suzuki, and Y. Nagasue, "Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random-amplitude-noise suppression," Optics Express 14, 348-360 (2006).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

2001 (1)

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric-Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

2000 (1)

K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000).
[CrossRef]

1999 (1)

Y. Ueno, S. Nakamura, and K. Tajima, "Spectral phase-locking in ultrafast all-optical Mach-Zehnder-type semiconductor wavelength converters," Jpn. J. Appl. Phys. 38, L1243-1245 (1999).
[CrossRef]

1998 (1)

1996 (1)

1993 (2)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A Tera-hertz optical asymmetric demultiplexer (TOAD)," IEEE Photonics Technol. Lett. 5, 767-790 (1993).
[CrossRef]

K. Tajima, "All-optical switch with switch-off time unrestricted by carrier lifetime," Jpn. J. Appl. Phys. 32, L1746-1749 (1993).
[CrossRef]

1990 (1)

Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, "Short pulse gain saturation in InGaAsP diode laser amplifiers," IEEE Photonics Technol. Lett. 2, 711-713 (1990).
[CrossRef]

Cabot, S.

Eisenstein, G.

Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, "Short pulse gain saturation in InGaAsP diode laser amplifiers," IEEE Photonics Technol. Lett. 2, 711-713 (1990).
[CrossRef]

Giles, C.R.

Glesk, I.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A Tera-hertz optical asymmetric demultiplexer (TOAD)," IEEE Photonics Technol. Lett. 5, 767-790 (1993).
[CrossRef]

Hall, K.L.

Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, "Short pulse gain saturation in InGaAsP diode laser amplifiers," IEEE Photonics Technol. Lett. 2, 711-713 (1990).
[CrossRef]

Ippen, E.P.

Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, "Short pulse gain saturation in InGaAsP diode laser amplifiers," IEEE Photonics Technol. Lett. 2, 711-713 (1990).
[CrossRef]

Jacques, J.J.

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A Tera-hertz optical asymmetric demultiplexer (TOAD)," IEEE Photonics Technol. Lett. 5, 767-790 (1993).
[CrossRef]

Lai, Y.

Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, "Short pulse gain saturation in InGaAsP diode laser amplifiers," IEEE Photonics Technol. Lett. 2, 711-713 (1990).
[CrossRef]

Leuthold, J.

Marom, D.M.

Mecozzi, A.

Mork, J.

M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

J. Mork and A. Mecozzi, "Theory of the ultrafast optical response of active semiconductor waveguides," J. Opt. Soc. Am. B 13, 1803-1816 (1996). http://josab.osa.org/abstract.cfm?id=33873
[CrossRef]

Nagasue, Y.

Y. Ueno, M. Toyoda, R. Suzuki, and Y. Nagasue, "Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random-amplitude-noise suppression," Optics Express 14, 348-360 (2006).
[CrossRef] [PubMed]

Nakamura, S.

Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573-2589 (2002). http://josab.osa.org/abstract.cfm?id=70413
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric-Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Spectral phase-locking in ultrafast all-optical Mach-Zehnder-type semiconductor wavelength converters," Jpn. J. Appl. Phys. 38, L1243-1245 (1999).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Record low-power all-optical semiconductor switch operation at ultrafast repetition rates above the carrier cutoff frequency," Opt. Lett. 23, 1846-1848 (1998).
[CrossRef]

Nielsen, M.L.

M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Prucnal, P. R.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A Tera-hertz optical asymmetric demultiplexer (TOAD)," IEEE Photonics Technol. Lett. 5, 767-790 (1993).
[CrossRef]

Ryf, R.

Sakaguchi, J.

M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A Tera-hertz optical asymmetric demultiplexer (TOAD)," IEEE Photonics Technol. Lett. 5, 767-790 (1993).
[CrossRef]

Stubkjaer, K.

K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000).
[CrossRef]

Suzuki, R.

Y. Ueno, M. Toyoda, R. Suzuki, and Y. Nagasue, "Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random-amplitude-noise suppression," Optics Express 14, 348-360 (2006).
[CrossRef] [PubMed]

M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Tajima, K.

Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573-2589 (2002). http://josab.osa.org/abstract.cfm?id=70413
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric-Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Spectral phase-locking in ultrafast all-optical Mach-Zehnder-type semiconductor wavelength converters," Jpn. J. Appl. Phys. 38, L1243-1245 (1999).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Record low-power all-optical semiconductor switch operation at ultrafast repetition rates above the carrier cutoff frequency," Opt. Lett. 23, 1846-1848 (1998).
[CrossRef]

K. Tajima, "All-optical switch with switch-off time unrestricted by carrier lifetime," Jpn. J. Appl. Phys. 32, L1746-1749 (1993).
[CrossRef]

Toyoda, M.

Y. Ueno, M. Toyoda, R. Suzuki, and Y. Nagasue, "Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random-amplitude-noise suppression," Optics Express 14, 348-360 (2006).
[CrossRef] [PubMed]

Ueno, Y.

M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Y. Ueno, M. Toyoda, R. Suzuki, and Y. Nagasue, "Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random-amplitude-noise suppression," Optics Express 14, 348-360 (2006).
[CrossRef] [PubMed]

Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573-2589 (2002). http://josab.osa.org/abstract.cfm?id=70413
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric-Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Spectral phase-locking in ultrafast all-optical Mach-Zehnder-type semiconductor wavelength converters," Jpn. J. Appl. Phys. 38, L1243-1245 (1999).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Record low-power all-optical semiconductor switch operation at ultrafast repetition rates above the carrier cutoff frequency," Opt. Lett. 23, 1846-1848 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric-Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A Tera-hertz optical asymmetric demultiplexer (TOAD)," IEEE Photonics Technol. Lett. 5, 767-790 (1993).
[CrossRef]

Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, "Short pulse gain saturation in InGaAsP diode laser amplifiers," IEEE Photonics Technol. Lett. 2, 711-713 (1990).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

K. Tajima, "All-optical switch with switch-off time unrestricted by carrier lifetime," Jpn. J. Appl. Phys. 32, L1746-1749 (1993).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Spectral phase-locking in ultrafast all-optical Mach-Zehnder-type semiconductor wavelength converters," Jpn. J. Appl. Phys. 38, L1243-1245 (1999).
[CrossRef]

Opt. Lett. (1)

Optics Express (2)

M.L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Y. Ueno, M. Toyoda, R. Suzuki, and Y. Nagasue, "Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random-amplitude-noise suppression," Optics Express 14, 348-360 (2006).
[CrossRef] [PubMed]

Other (4)

K. Takiguchi, T. Kominato, H. Takahashi, T. Shibata, and K. Okamoto, "Flexible pulse waveform generation using a silica waveguide based spectrum synthesis circuit," Optical Fiber Communication Conference (OFC 2004), Feb. 22-24, 2004, Los Angeles, CA, USA, paper no. TuI5.

J. Mork, T.W. Berg, M.L. Nielsen, and A.V. Uskov, "The role of fast carrier dynamics in SOA-based devices," IEICE Trans. Electron. E87-C, 1126-1132 (2004).

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A.M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, "Error-free 320-Gb/s SOA-based wavelength conversion using optical filtering," Optical Fiber Communication Conference (OFC 2006), March 5-10, 2006, Anaheim, PDP28.

S. Nakamura, Y. Ueno, and K. Tajima, "Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch," Optical Fiber Communication Conference (OFC 2002), March 17-22, 2002, Anaheim, Post-deadline Paper FD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic views of the two alternative DISC schemes considered in this work. (a) conventional scheme and (b) expanded scheme with the optical spectrum synthesizer block, f0: the frequency or the bitrate of the input.

Fig. 2.
Fig. 2.

Calculated probe waveforms all-optically gated via the SOA, by input clock pulses, in the conventional DISC scheme.

Fig 3.
Fig 3.

Transitions of calculated optical spectra from input through output, in the conventional scheme without assuming CCR in the SOA.

Fig. 4.
Fig. 4.

Transitions of calculated spectra in the expanded DISC scheme, assuming CCR in the SOA.

Fig. 5.
Fig. 5.

A gated probe’s waveforms at the output of our expanded DISC which includes the optimized spectrum synthesizer from Figs. 4(c) and (d).

Fig. 6.
Fig. 6.

Pseudorandom data signals before and after our expanded DISC

Tables (1)

Tables Icon

Table 1. Parameters used in the calculation.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d d t n ( t ) = I op q V n ( t ) τ 1 1 V { G ( n ( t ) ) 1 } × E pulse ( t ) 2 + E cw 2 ħ ω ,
d d t n ( t ) = I op q V n ( t ) τ 1 1 V { G ( n ( t ) ) 1 } × E pulse ( t ) 2 + E cw 2 ħ ω ,
when n trans < n ( t ) < n max ,
d d t n ( t ) = I op q V n ( t ) τ 2 1 V { G ( n ( t ) ) 1 } × E pulse ( t ) 2 + E cw 2 ħ ω ,
when 0 < n ( t ) < n trans .
G ( n ( t ) ) = exp [ d g d n · n ( t ) · Γ L ] , and
Φ cw ( t ) = k 0 · d n r d n · [ n max n ( t ) ] · Γ L .
E out ( t ) = 1 2 π + S out ( Δ f ) · e i · 2 π · Δ f · t · d ( Δ f ) .
S out SOA ( Δ f ) = 1 2 π + E cw · G ( n ( t ) ) · e i Φ c w ( t ) · e + i · 2 π · Δ f · t · d t , and
S out ( Δ f ) = S out SOA ( Δ f ) · T f ( Δ f ) · e i · Φ f ( Δ f ) ,

Metrics