Abstract

We demonstrate experimentally two widely tunable optical couplers formed with parallel long-period polymer waveguide gratings. One of the couplers consists of two parallel gratings and shows a peak coupling efficiency of ~34%. The resonance wavelength of the coupler can be tuned thermally with a sensitivity of 4.7 nm/°C. The experimental results agree well with the coupled-mode analysis. The other coupler consists of an array of ten widely separated gratings. A peak coupling efficiency of ~11% is obtained between the two best matched gratings in the array and the resonance wavelength can be tuned thermally with a sensitivity of -3.8 nm/°C. These couplers have the potential to be further developed into practical broadband add/drop multiplexers and signal dividers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. K. S. Chiang and Q. Liu, "Long-period grating devices for application in optical communication," in Proceedings of the 5th International Conference on Optical Communications and Networks (ICOCN 2006), (Chengdu, China, Sept. 2006), pp. 128-133.
  3. K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fibre gratings," Electron. Lett. 36, 1408-1409 (2000).
    [CrossRef]
  4. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, "Analysis of two parallel long-period fiber gratings," J. Lightwave Technol. 22, 1358-1366 (2004).
    [CrossRef]
  5. Y. Liu and K. S. Chiang, "Broadband optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 229-231 (2006).
    [CrossRef]
  6. V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
    [CrossRef] [PubMed]
  7. Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
    [CrossRef]
  8. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
    [CrossRef]
  9. K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
    [CrossRef]
  10. Q. Liu, K. S. Chiang, and K. P. Lor, "Long-period gratings in polymer ridge waveguides," Opt. Express 13, 1150-1160 (2005).
    [CrossRef] [PubMed]
  11. Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115-(1-3) (2005).
    [CrossRef]
  12. M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
    [CrossRef]
  13. M. S. Kwon and S. Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
    [CrossRef]
  14. A. Perentos, G. Kostovski and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
    [CrossRef]
  15. Y. Bai and K. S. Chiang, "Analysis and design of long-period waveguide grating couplers," J. Lightwave Technol. 23, 4363-4373 (2005).
    [CrossRef]
  16. Y. Bai and K. S. Chiang, "Analysis of long-period waveguide grating arrays," J. Lightwave Technol. 24,3856-3863 (2006).
    [CrossRef]
  17. K. P. Lor, Q. Liu, and K. S. Chiang, "UV-written long-period gratings on polymer waveguides," IEEE Photon. Technol. Lett. 17, 594-596 (2005).
    [CrossRef]
  18. K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
    [CrossRef]

2006 (3)

Y. Liu and K. S. Chiang, "Broadband optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 229-231 (2006).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. Bai and K. S. Chiang, "Analysis of long-period waveguide grating arrays," J. Lightwave Technol. 24,3856-3863 (2006).
[CrossRef]

2005 (6)

Q. Liu, K. S. Chiang, and K. P. Lor, "Long-period gratings in polymer ridge waveguides," Opt. Express 13, 1150-1160 (2005).
[CrossRef] [PubMed]

Y. Bai and K. S. Chiang, "Analysis and design of long-period waveguide grating couplers," J. Lightwave Technol. 23, 4363-4373 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115-(1-3) (2005).
[CrossRef]

M. S. Kwon and S. Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

A. Perentos, G. Kostovski and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, "UV-written long-period gratings on polymer waveguides," IEEE Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

2004 (3)

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
[CrossRef]

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
[CrossRef]

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, "Analysis of two parallel long-period fiber gratings," J. Lightwave Technol. 22, 1358-1366 (2004).
[CrossRef]

2003 (2)

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

2002 (1)

2000 (1)

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fibre gratings," Electron. Lett. 36, 1408-1409 (2000).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Bai, Y.

Bertrand, H.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Chan, F. Y. M.

Chan, H. P.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Chiang, K. S.

Y. Liu and K. S. Chiang, "Broadband optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 229-231 (2006).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. Bai and K. S. Chiang, "Analysis of long-period waveguide grating arrays," J. Lightwave Technol. 24,3856-3863 (2006).
[CrossRef]

Y. Bai and K. S. Chiang, "Analysis and design of long-period waveguide grating couplers," J. Lightwave Technol. 23, 4363-4373 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115-(1-3) (2005).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, "UV-written long-period gratings on polymer waveguides," IEEE Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, "Long-period gratings in polymer ridge waveguides," Opt. Express 13, 1150-1160 (2005).
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
[CrossRef]

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, "Analysis of two parallel long-period fiber gratings," J. Lightwave Technol. 22, 1358-1366 (2004).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fibre gratings," Electron. Lett. 36, 1408-1409 (2000).
[CrossRef]

Chow, C. K.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115-(1-3) (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Christophe, M.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Chu, Y. M.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Cyril, G.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Jacquin, O.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kostovski, G.

A. Perentos, G. Kostovski and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Kwon, M. S.

M. S. Kwon and S. Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

Laurent, C.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Li, S.

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fibre gratings," Electron. Lett. 36, 1408-1409 (2000).
[CrossRef]

Liu, Q.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, "UV-written long-period gratings on polymer waveguides," IEEE Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, "Long-period gratings in polymer ridge waveguides," Opt. Express 13, 1150-1160 (2005).
[CrossRef] [PubMed]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115-(1-3) (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

Liu, Y.

Y. Liu and K. S. Chiang, "Broadband optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 229-231 (2006).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fibre gratings," Electron. Lett. 36, 1408-1409 (2000).
[CrossRef]

Lor, K. P.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115-(1-3) (2005).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, "UV-written long-period gratings on polymer waveguides," IEEE Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and K. P. Lor, "Long-period gratings in polymer ridge waveguides," Opt. Express 13, 1150-1160 (2005).
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Mitchell, A.

A. Perentos, G. Kostovski and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Ng, M. N.

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, "Analysis of two parallel long-period fiber gratings," J. Lightwave Technol. 22, 1358-1366 (2004).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fibre gratings," Electron. Lett. 36, 1408-1409 (2000).
[CrossRef]

Perentos, A.

A. Perentos, G. Kostovski and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Rastogi, V.

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

Shin, S. Y.

M. S. Kwon and S. Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115-(1-3) (2005).
[CrossRef]

Electron. Lett. (2)

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fibre gratings," Electron. Lett. 36, 1408-1409 (2000).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-423 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Y. Liu and K. S. Chiang, "Broadband optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 229-231 (2006).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

M. S. Kwon and S. Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

A. Perentos, G. Kostovski and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, "UV-written long-period gratings on polymer waveguides," IEEE Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Commun. (1)

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, "Advanced spectral filtering functionalities in ion-exchanged waveguides with artificial cladding gratings," Opt. Commun. 233, 97-106 (2004).
[CrossRef]

Opt. Express (1)

Other (1)

K. S. Chiang and Q. Liu, "Long-period grating devices for application in optical communication," in Proceedings of the 5th International Conference on Optical Communications and Networks (ICOCN 2006), (Chengdu, China, Sept. 2006), pp. 128-133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a). Schematic diagram of an LPWG coupler formed in epoxy-clad BCB channel waveguides. (b) SEM image of a fabricated LPWG coupler.

Fig. 2.
Fig. 2.

Normalized transmission spectra measured from different (a) launching cores and (b) coupled cores for the TE polarization at different temperatures.

Fig. 3.
Fig. 3.

Temperature dependences of the resonance wavelengths measured for the band-rejection and band-pass outputs of the coupler.

Fig. 4.
Fig. 4.

(a). Calculated relationship between the resonance wavelength and the grating pitch for a number of low-order cladding modes. Calculated electric-field patterns of (b) the guided mode of the left core and (c) the cladding mode of the entire structure at the wavelength 1600 nm. (d) Calculated transmission spectra for the fabricated LPWG coupler. All the results are for the TE polarization.

Fig. 5.
Fig. 5.

(a). Schematic diagram of an array of ten identical LPWGs formed in epoxy-clad BCB channel waveguides. (b) SEM image of a fabricated LPWG array.

Fig. 6.
Fig. 6.

(a). Normalized transmission spectra measured from different launching cores for the TE polarization at 35.9°C. (b). Measured cladding thickness profile of the fabricated array, where the locations of the ten cores are shown.

Fig. 7.
Fig. 7.

Normalized transmission spectra measured from the coupled cores for the TE polarization at 35.9°C when light was launched into (a) LPWG1 or (c) LPWG9. Photos showing the outputs from the array at 1460 nm and 1540 nm, respectively, when light was launched into (b) LPWG1 or (d) LPWG9. The arrows indicate the locations of the cores.

Fig. 8.
Fig. 8.

Temperature dependences of the resonance wavelengths measured for LPWG1 and LPWG9 when light was launched into LPWG1.

Fig. 9.
Fig. 9.

Normalized transmission spectra measured from the coupled cores for the TE polarization at 35.9°C when light was launched into (a) LPWG2 or (b) LPWG8.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d A m d z = j κ m B exp ( j δ z ) , m = 1,2
d B d z = j m = 1 2 κ m A m exp ( j δ z ) ,

Metrics