Abstract

We report on a perfect transmission in one-dimensional metallic structure using time-domain terahertz spectroscopy. Fabry-Perot resonance appearing in spectral region below first Rayleigh minimum strongly enhances transmission up to over ninety-nine percent. Theoretical calculations reveal that under the perfect transmission condition, a symmetric eigenmode inside the slits is excited and a funneling of all incident energy onto the slits occurs, resulting in large energy concentration equivalent to the inverse sample coverage and high near-field enhancement of electric and magnetic field intensities. Our work opens way toward nearfield terahertz amplification, applicable to high-field terahertz spectroscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).
  2. Lord Rayleigh, "On the passage of electric waves through tubes, or the vibrations of dielectric cylinders," Phil. Mag. 14, 60-65 (1907).
  3. R. Ulrich, "Interference filters for the far infrared," Appl. Opt. 7, 1987-1996 (1968).
    [CrossRef] [PubMed]
  4. R. Ulrich, T. J. Bridges, and M. A. Pollack, "Variable metal mesh coupler for far infrared lasers," Appl. Opt. 9, 2511-2516 (1970).
    [CrossRef] [PubMed]
  5. Lochbihler and R. Depine, "Highly conducting wire gratings in the resonance region," Appl. Opt. 32, 3459-3465 (1993).
    [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
    [CrossRef]
  7. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  8. F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
    [CrossRef] [PubMed]
  9. T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
    [CrossRef]
  10. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, E. Sano, "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210-1212 (2005).
    [CrossRef] [PubMed]
  11. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
    [CrossRef] [PubMed]
  12. J. T. Shen, PeterB. Catrysse, and Shanhui Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005).
    [CrossRef] [PubMed]
  13. M.M.J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
    [CrossRef]
  14. F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  15. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  16. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
    [CrossRef]
  17. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
    [CrossRef]
  18. Y. Takakura, "Optical resonance in a narrow slit in thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
    [CrossRef] [PubMed]
  19. F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
    [CrossRef] [PubMed]
  20. J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit," Phys. Rev. B 69, 026601 (2004).
    [CrossRef]
  21. M. van Exter and D. Grischkowsky, "Optical and electric properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990).
    [CrossRef]
  22. Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000).
    [CrossRef]
  23. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
    [CrossRef]
  24. J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13-15 (2002).
    [CrossRef]

2006 (2)

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

2005 (3)

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, E. Sano, "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210-1212 (2005).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
[CrossRef] [PubMed]

J. T. Shen, PeterB. Catrysse, and Shanhui Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

J. T. Shen, PeterB. Catrysse, and Shanhui Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit," Phys. Rev. B 69, 026601 (2004).
[CrossRef]

2003 (1)

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

2002 (5)

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

M.M.J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13-15 (2002).
[CrossRef]

2001 (2)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Y. Takakura, "Optical resonance in a narrow slit in thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

2000 (2)

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
[CrossRef]

Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

1993 (1)

1990 (1)

M. van Exter and D. Grischkowsky, "Optical and electric properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990).
[CrossRef]

1970 (1)

1968 (1)

1907 (1)

Lord Rayleigh, "On the passage of electric waves through tubes, or the vibrations of dielectric cylinders," Phil. Mag. 14, 60-65 (1907).

1902 (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Ahn, Y. H.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13-15 (2002).
[CrossRef]

Akazawa, M.

Blaikie, R. J.

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

Blanco, L. A.

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
[CrossRef] [PubMed]

Borisov, A. G.

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
[CrossRef] [PubMed]

Bravo-Abad, J.

J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit," Phys. Rev. B 69, 026601 (2004).
[CrossRef]

Bridges, T. J.

Crick, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
[CrossRef]

Cumming, D. R. S.

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

Depine, R.

Drysdale, T. D.

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit," Phys. Rev. B 69, 026601 (2004).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Gomez-Santos, G.

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
[CrossRef] [PubMed]

Grischkowsky, D.

M. van Exter and D. Grischkowsky, "Optical and electric properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990).
[CrossRef]

Hangyo, M.

Hibbins, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
[CrossRef]

Jeoung, S. C.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

Jiang, Z.

Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000).
[CrossRef]

Kang, J. H.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Kim, D. S.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13-15 (2002).
[CrossRef]

Lawrence, C. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
[CrossRef]

Lee, J. W.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Lezec, H. L.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Li, M.

Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000).
[CrossRef]

Lienau, Ch.

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Lochbihler,

Martin-Moreno, L.

J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit," Phys. Rev. B 69, 026601 (2004).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Miyamaru, F.

Oh, E.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13-15 (2002).
[CrossRef]

Park, D. J.

Park, Q-Han

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Peter, J. T.

J. T. Shen, PeterB. Catrysse, and Shanhui Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Planken, P. C. M.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Pollack, M. A.

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Sambles, J. R.

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
[CrossRef]

Sano, E.

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Seo, M. A.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

Shabanov, S. V.

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
[CrossRef] [PubMed]

Shen, J. T.

J. T. Shen, PeterB. Catrysse, and Shanhui Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Sohn, J. Y.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13-15 (2002).
[CrossRef]

Takakura, Y.

Y. Takakura, "Optical resonance in a narrow slit in thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

Tanaka, M.

Tanaka, T.

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Treacy, M.M.J.

M.M.J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef]

Ulrich, R.

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

van Exter, M.

M. van Exter and D. Grischkowsky, "Optical and electric properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990).
[CrossRef]

Wenckebach, W. Th.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Went, H. E.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Yang, F.

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Zhang, X. C.

Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000).
[CrossRef]

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (6)

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, "Selective transmission through very deep zero order metallic gratings at microwave frequencies," Appl. Phys. Lett. 77, 2789-2791 (2000).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q-Han Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

M. van Exter and D. Grischkowsky, "Optical and electric properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990).
[CrossRef]

Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000).
[CrossRef]

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13-15 (2002).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phil. Mag. (2)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Lord Rayleigh, "On the passage of electric waves through tubes, or the vibrations of dielectric cylinders," Phil. Mag. 14, 60-65 (1907).

Phys. Rev. B (3)

M.M.J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit," Phys. Rev. B 69, 026601 (2004).
[CrossRef]

Phys. Rev. Lett. (6)

Y. Takakura, "Optical resonance in a narrow slit in thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

J. T. Shen, PeterB. Catrysse, and Shanhui Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005)
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic view of a one-dimensional metallic structure and an SEM image for a typical sample. (b) Experimental setup. (c) Terahertz time traces of a reference signal (blue line) and the signal after passing through a sample with thickness of 153 µm (red line) at normal incidence. (d) Fourier transform for time traces in (c).

Fig. 2.
Fig. 2.

(a) Normalized transmission amplitudes at normal incidence for samples with a fixed period of d=500µm and thicknesses of 17, 75, 153, 195 and 400 µm. The slit widths of the five samples are 78, 80, 83, 140, and 100 µm respectively, which are properly designed to realize the perfect transmission. (b) Theoretical calculations for the samples in (a).

Fig. 3.
Fig. 3.

(a) Terahertz time trace of a quasi-monochromatic source at 0.466 THz (top), together with its trace after transmission through the sample with h=195 µm (bottom). (b) The magnetic field profiles along the z direction passing through the slit. Shadow area indicates the sample. Under 100% transmission, field profile is symmetric relative to z=0 (blue line). At a neighboring frequency with 50% transmission, field profile becomes asymmetric (red line). (c) Poynting vector near the slit under 100% transmission.

Fig. 4.
Fig. 4.

Normalized angle dependent transmission amplitudes for thickness of 195 (a) and 400 µm (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T n = 2 i Q n k P 0 χ n sin ( k h ) [ 1 + k 2 W 2 + 2 i k W cot ( k h ) ] ,
R n = 1 2 i Q n k P 0 [ cot ( k h ) i k W ] χ n [ 1 + k 2 W 2 + 2 i k W cot ( k h ) ] ,
1 ( P 0 Q 0 ) 2 γ 2 2 γ cot ( k h ) = 0 ,

Metrics