Abstract

Here the behavior of periodic annular aperture arrays in a perfectly conducting film is considered as the geometry of the apertures is varied. Using a previously developed rigorous electromagnetic modal method it is shown that the far-field transmission spectrum approaches that for an array of circular apertures as the stop size approaches zero. In the case where the diameter of the apertures is significantly less than that of the period of the array, the behavior of the array changes gradually from one where the predominant features in the spectra are due to the excitation of a waveguide resonance to one exhibiting ‘extraordinary transmission’.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  2. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
    [Crossref]
  3. A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans Antennas Propag. 36, 607–611 (1988).
    [Crossref]
  4. A. Roberts and R. C. Compton, “A vector measurement scheme for testing quasi-optical components,” Int. J. Infrared Millimeter Waves 11, 165–174 (1990).
    [Crossref]
  5. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, and L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass-filters,” Opt. Lett. 14, 931–933 (1989).
    [Crossref] [PubMed]
  6. R. T. Kristensen, J. F. Beausang, and D. M. DePoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
    [Crossref]
  7. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
    [Crossref] [PubMed]
  8. J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffman, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611–1613 (2005).
    [Crossref] [PubMed]
  9. F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
    [Crossref]
  10. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902-1-4 (2005).
    [Crossref] [PubMed]
  11. C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave. Theory Tech. 21, 1–6 (1973).
    [Crossref]
  12. P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
    [Crossref]
  13. L. Martín-Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Exp. 12, 3619–3628 (2004).
    [Crossref]
  14. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E.72, 016608-1-4 (2005).
    [Crossref]
  15. A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: A comparison of theoretical and experimental performance,” Int. J. Inf. Millimeter Waves 15, 505–517 (1994).
    [Crossref]
  16. N. Marcuvitz, “Waveguide Handbook,” Peter Peregrinus Ltd., London, 1986.
  17. F. I. Baida and D. van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
    [Crossref]
  18. A. Roberts, “Modal methods for gratings, grids and apertures,” PhD thesis, University of Sydney (1988).
  19. J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
    [Crossref]
  20. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.,  96, 233901 (2006).
    [Crossref] [PubMed]

2006 (1)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.,  96, 233901 (2006).
[Crossref] [PubMed]

2005 (4)

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
[Crossref] [PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902-1-4 (2005).
[Crossref] [PubMed]

J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffman, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611–1613 (2005).
[Crossref] [PubMed]

2004 (3)

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

L. Martín-Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Exp. 12, 3619–3628 (2004).
[Crossref]

R. T. Kristensen, J. F. Beausang, and D. M. DePoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

2002 (1)

F. I. Baida and D. van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1994 (1)

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: A comparison of theoretical and experimental performance,” Int. J. Inf. Millimeter Waves 15, 505–517 (1994).
[Crossref]

1990 (1)

A. Roberts and R. C. Compton, “A vector measurement scheme for testing quasi-optical components,” Int. J. Infrared Millimeter Waves 11, 165–174 (1990).
[Crossref]

1989 (1)

1988 (1)

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans Antennas Propag. 36, 607–611 (1988).
[Crossref]

1980 (1)

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
[Crossref]

1979 (1)

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[Crossref]

1973 (1)

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave. Theory Tech. 21, 1–6 (1973).
[Crossref]

Andrewartha, J. R.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[Crossref]

Baida, F. I.

J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffman, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611–1613 (2005).
[Crossref] [PubMed]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

F. I. Baida and D. van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[Crossref]

Beausang, J. F.

R. T. Kristensen, J. F. Beausang, and D. M. DePoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

Belkhir, A.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

Bernal, M.-P.

Beruete, M.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

Bliek, P. J.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
[Crossref]

Botten, L. C.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
[Crossref]

Bravo-Abad, J.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

Brueck, S. R. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
[Crossref] [PubMed]

Campillo, I.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

Chen, C.-C.

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave. Theory Tech. 21, 1–6 (1973).
[Crossref]

Compton, R. C.

A. Roberts and R. C. Compton, “A vector measurement scheme for testing quasi-optical components,” Int. J. Infrared Millimeter Waves 11, 165–174 (1990).
[Crossref]

Dawes, D. H.

de Abajo, F. J. García

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E.72, 016608-1-4 (2005).
[Crossref]

Deleuil, R.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
[Crossref]

DePoy, D. M.

R. T. Kristensen, J. F. Beausang, and D. M. DePoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

Dolado, J. S.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

Dwir, B.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Fan, W.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
[Crossref] [PubMed]

Fox, J. R.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[Crossref]

García-Vidal, F. J.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

L. Martín-Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Exp. 12, 3619–3628 (2004).
[Crossref]

Gemünd, H.-P.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: A comparison of theoretical and experimental performance,” Int. J. Inf. Millimeter Waves 15, 505–517 (1994).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Gómez-Medina, R.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E.72, 016608-1-4 (2005).
[Crossref]

Granet, G.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902-1-4 (2005).
[Crossref] [PubMed]

Hoffman, P.

Kreysa, E.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: A comparison of theoretical and experimental performance,” Int. J. Inf. Millimeter Waves 15, 505–517 (1994).
[Crossref]

Kristensen, R. T.

R. T. Kristensen, J. F. Beausang, and D. M. DePoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

Krug, P. A.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902-1-4 (2005).
[Crossref] [PubMed]

Macfarlane, J. C.

Maillotte, H.

Malloy, K. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
[Crossref] [PubMed]

Marcuvitz, N.

N. Marcuvitz, “Waveguide Handbook,” Peter Peregrinus Ltd., London, 1986.

Martín-Moreno, L.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

L. Martín-Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Exp. 12, 3619–3628 (2004).
[Crossref]

Maystre, D.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
[Crossref]

McPhedran, R. C.

P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, and L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass-filters,” Opt. Lett. 14, 931–933 (1989).
[Crossref] [PubMed]

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans Antennas Propag. 36, 607–611 (1988).
[Crossref]

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
[Crossref]

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
[Crossref] [PubMed]

Moreau, A.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

Mussot, A.

Perentes, A.

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.,  96, 233901 (2006).
[Crossref] [PubMed]

Roberts, A.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: A comparison of theoretical and experimental performance,” Int. J. Inf. Millimeter Waves 15, 505–517 (1994).
[Crossref]

A. Roberts and R. C. Compton, “A vector measurement scheme for testing quasi-optical components,” Int. J. Infrared Millimeter Waves 11, 165–174 (1990).
[Crossref]

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans Antennas Propag. 36, 607–611 (1988).
[Crossref]

A. Roberts, “Modal methods for gratings, grids and apertures,” PhD thesis, University of Sydney (1988).

Roussey, M.

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.,  96, 233901 (2006).
[Crossref] [PubMed]

Sáenz, J. J.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E.72, 016608-1-4 (2005).
[Crossref]

Salvi, J.

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902-1-4 (2005).
[Crossref] [PubMed]

Sandu, C.

Sorolla, M.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

Sylvestre, T.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Utke, I.

van Labeke, D.

J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffman, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611–1613 (2005).
[Crossref] [PubMed]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

F. I. Baida and D. van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[Crossref]

von Bibra, M. L.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: A comparison of theoretical and experimental performance,” Int. J. Inf. Millimeter Waves 15, 505–517 (1994).
[Crossref]

Whitbourn, L. B.

Wilson, I. J.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wright, W.

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
[Crossref] [PubMed]

Appl. Phys. B (1)

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

IEEE Trans Antennas Propag. (1)

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans Antennas Propag. 36, 607–611 (1988).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[Crossref]

IEEE Trans. Microwave. Theory Tech. (2)

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave. Theory Tech. 21, 1–6 (1973).
[Crossref]

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies: Theory, experiment and applications,” IEEE Trans. Microwave. Theory Tech. 28, 1119–1125 (1980).
[Crossref]

Int. J. Inf. Millimeter Waves (1)

A. Roberts, M. L. von Bibra, H.-P. Gemünd, and E. Kreysa, “Thick grids with circular apertures: A comparison of theoretical and experimental performance,” Int. J. Inf. Millimeter Waves 15, 505–517 (1994).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

A. Roberts and R. C. Compton, “A vector measurement scheme for testing quasi-optical components,” Int. J. Infrared Millimeter Waves 11, 165–174 (1990).
[Crossref]

J. Appl. Phys. (1)

R. T. Kristensen, J. F. Beausang, and D. M. DePoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Opt. Acta (1)

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[Crossref]

Opt. Commun. (1)

F. I. Baida and D. van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[Crossref]

Opt. Exp. (1)

L. Martín-Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Exp. 12, 3619–3628 (2004).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (3)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.,  96, 233901 (2006).
[Crossref] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902-1-4 (2005).
[Crossref] [PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902-1-4 (2005).
[Crossref] [PubMed]

Other (3)

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E.72, 016608-1-4 (2005).
[Crossref]

A. Roberts, “Modal methods for gratings, grids and apertures,” PhD thesis, University of Sydney (1988).

N. Marcuvitz, “Waveguide Handbook,” Peter Peregrinus Ltd., London, 1986.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic showing the key parameters used in the description of arrays of annular apertures in a metallic screen. Note that a substrate is not shown.

Fig. 2.
Fig. 2.

Plot of total transmitted power normalized to incident power for a plane wave normally incident on arrays of annular and circular apertures in screens of thickness 0.1d. Spectra are shown for arrays of annular apertures with an outer radius of 0.3d with inner radii of 0.28d (red curve), 0.15d (yellow curve), 0.1d (blue curve) and 0.03d (asterisks), while the black line shows the spectra for an array of circular apertures with a radius of 0.3d.

Fig 3.
Fig 3.

(a). Total normalized transmission through an array of circular apertures with radii varying from 0.2 – 0.45d in a screen of thickness 0.4d. The cutoff wavelength for the corresponding circular waveguide TE (1,1) mode is shown. (b) Total transmission through an array of annular apertures with outer radius varying from 0.1 – 0.45d in a screen of thickness 0.4d. The ratio of the outer aperture radius to the inner radius, a/b, is fixed at 1.125. The cutoff wavelength for the TE (1,1) coaxial waveguide mode is shown.

Fig. 4.
Fig. 4.

(a). Zeroth order transmission through an array of annular apertures with outer radii of 0.2d in a screen of thickness 0.4d where the inner radius varies from 0.02–0.19d. (b) Transmission spectra for arrays of circular apertures with inner radii of 0.19d (red line), 0.15d (blue line) and 0.02d (black line).

Metrics