Abstract

A resonant grating mirror comprising a multilayer submirror and a grating slab waveguide submirror exhibiting constructive mutual reflection is shown experimentally to provide zero transmission. Its reflection line width of less than 1 nm, its polarization selectivity and low overall loss make the device usable as a longitudinal mode filter in a disk laser in the 1000–1100 nm wavelength range.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Pigeon, O. Parriaux, Y. Ouerdane, and A. V. Tishchenko, "Polarizing grating mirror for CW Nd:YAG microchip lasers," IEEE Photon.Technol. Lett. 12, 648-650 (2000).
    [CrossRef]
  2. O. Parriaux, A. V. Tishchenko, and F. Pigeon, "Associating a lossless polarizing function in multilayer laser mirrors by means of a resonant grating," Photonics Europe Proc.SPIE Vol. 6187, 61870B (Apr. 25, 2006).
  3. J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev and K. Ueda, "A polarization-stabilized microchip laser using a resonant grating mirror," Appl. Phys. Bto be published
  4. E. Gamet, J. C. Pommier, S. Reynaud, S. Tonchev, O. Parriaux, J.-F. Bisson, K. I. Ueda, and T. Ito, "Polarizing multilayer laser mirror using constructive zeroth order resonant grating reflexion," Diffractive Optics abstracts pp 157-158, Warsaw, Poland (3-7 Sept. 2005)
  5. T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
    [CrossRef]
  6. L Li and J Hirsh, "All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings," Opt. Lett. 20, 1349-1351 (1995).
    [CrossRef] [PubMed]
  7. T. Clausnitzer, E.-B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, and A. Duparré, "Ultra low-loss low-efficiency diffraction gratings," Opt. Express 13, 4370-4378 (2005).
    [CrossRef] [PubMed]
  8. G. A. Golubenko, A. S. Svakhin, A. V. Tishchenko, and V. A Sychugov, "Total reflection of light from the corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985)
    [CrossRef]
  9. I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527 (1989)
    [CrossRef]
  10. E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
    [CrossRef]
  11. F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1,545-551 (1999).
    [CrossRef]
  12. A. V. Tishchenko and N. Lyndin, "The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also !)," Workshop on grating theory, Clermont-Ferrand, France (June 2004)
  13. S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).
  14. I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, "Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface," Sov. J. Quantum Electron. 16, 1063 (1986).
    [CrossRef]
  15. F. R. Flory, Thin films for optical systems (Marcel Dekker, 1995).

2006 (1)

O. Parriaux, A. V. Tishchenko, and F. Pigeon, "Associating a lossless polarizing function in multilayer laser mirrors by means of a resonant grating," Photonics Europe Proc.SPIE Vol. 6187, 61870B (Apr. 25, 2006).

2005 (2)

S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).

T. Clausnitzer, E.-B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, and A. Duparré, "Ultra low-loss low-efficiency diffraction gratings," Opt. Express 13, 4370-4378 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

2003 (1)

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
[CrossRef]

2000 (1)

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. V. Tishchenko, "Polarizing grating mirror for CW Nd:YAG microchip lasers," IEEE Photon.Technol. Lett. 12, 648-650 (2000).
[CrossRef]

1999 (1)

F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1,545-551 (1999).
[CrossRef]

1995 (1)

1989 (1)

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527 (1989)
[CrossRef]

1986 (1)

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, "Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface," Sov. J. Quantum Electron. 16, 1063 (1986).
[CrossRef]

1985 (1)

G. A. Golubenko, A. S. Svakhin, A. V. Tishchenko, and V. A Sychugov, "Total reflection of light from the corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985)
[CrossRef]

Ahmed, M. A.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527 (1989)
[CrossRef]

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, "Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface," Sov. J. Quantum Electron. 16, 1063 (1986).
[CrossRef]

Bisson, J.-F.

J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev and K. Ueda, "A polarization-stabilized microchip laser using a resonant grating mirror," Appl. Phys. Bto be published

Bonnet, E.

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
[CrossRef]

Bunkowski, A.

Burmeister, O.

Cachard, A.

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
[CrossRef]

Cambril, E.

F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1,545-551 (1999).
[CrossRef]

Clausnitzer, T.

Danzmann, K.

Duparré, A.

Giovannini, H.

F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1,545-551 (1999).
[CrossRef]

Gliech, S.

Golubenko, G. A.

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, "Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface," Sov. J. Quantum Electron. 16, 1063 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, A. V. Tishchenko, and V. A Sychugov, "Total reflection of light from the corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985)
[CrossRef]

Graf, Th.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Hirsh, J

Huber, D.

S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).

Kley, E.-B.

Lemarchand, F.

F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1,545-551 (1999).
[CrossRef]

Letartre, X.

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
[CrossRef]

Li, L

Moser, T.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Ouerdane, Y.

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. V. Tishchenko, "Polarizing grating mirror for CW Nd:YAG microchip lasers," IEEE Photon.Technol. Lett. 12, 648-650 (2000).
[CrossRef]

Parriaux, O.

O. Parriaux, A. V. Tishchenko, and F. Pigeon, "Associating a lossless polarizing function in multilayer laser mirrors by means of a resonant grating," Photonics Europe Proc.SPIE Vol. 6187, 61870B (Apr. 25, 2006).

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
[CrossRef]

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. V. Tishchenko, "Polarizing grating mirror for CW Nd:YAG microchip lasers," IEEE Photon.Technol. Lett. 12, 648-650 (2000).
[CrossRef]

J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev and K. Ueda, "A polarization-stabilized microchip laser using a resonant grating mirror," Appl. Phys. Bto be published

Pigeon, F.

O. Parriaux, A. V. Tishchenko, and F. Pigeon, "Associating a lossless polarizing function in multilayer laser mirrors by means of a resonant grating," Photonics Europe Proc.SPIE Vol. 6187, 61870B (Apr. 25, 2006).

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. V. Tishchenko, "Polarizing grating mirror for CW Nd:YAG microchip lasers," IEEE Photon.Technol. Lett. 12, 648-650 (2000).
[CrossRef]

Pommier, J. C.

J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev and K. Ueda, "A polarization-stabilized microchip laser using a resonant grating mirror," Appl. Phys. Bto be published

Pulker, H. K.

S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).

Schlichtherle, S.

S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).

Schnabel, R.

Sentenac, A.

F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1,545-551 (1999).
[CrossRef]

Strauss, G. N.

S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, A. V. Tishchenko, and V. A Sychugov, "Total reflection of light from the corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985)
[CrossRef]

Sychugov, V. A

G. A. Golubenko, A. S. Svakhin, A. V. Tishchenko, and V. A Sychugov, "Total reflection of light from the corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985)
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527 (1989)
[CrossRef]

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, "Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface," Sov. J. Quantum Electron. 16, 1063 (1986).
[CrossRef]

Tafelmaier, H.

S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).

Tishchenko, A. V.

O. Parriaux, A. V. Tishchenko, and F. Pigeon, "Associating a lossless polarizing function in multilayer laser mirrors by means of a resonant grating," Photonics Europe Proc.SPIE Vol. 6187, 61870B (Apr. 25, 2006).

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
[CrossRef]

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. V. Tishchenko, "Polarizing grating mirror for CW Nd:YAG microchip lasers," IEEE Photon.Technol. Lett. 12, 648-650 (2000).
[CrossRef]

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, "Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface," Sov. J. Quantum Electron. 16, 1063 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, A. V. Tishchenko, and V. A Sychugov, "Total reflection of light from the corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985)
[CrossRef]

Tonchev, S.

J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev and K. Ueda, "A polarization-stabilized microchip laser using a resonant grating mirror," Appl. Phys. Bto be published

Tünnermann, A.

Ueda, K.

J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev and K. Ueda, "A polarization-stabilized microchip laser using a resonant grating mirror," Appl. Phys. Bto be published

Wyss, E.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Appl. Phys. B (1)

J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev and K. Ueda, "A polarization-stabilized microchip laser using a resonant grating mirror," Appl. Phys. Bto be published

IEEE Photon.Technol. Lett. (1)

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. V. Tishchenko, "Polarizing grating mirror for CW Nd:YAG microchip lasers," IEEE Photon.Technol. Lett. 12, 648-650 (2000).
[CrossRef]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527 (1989)
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1,545-551 (1999).
[CrossRef]

Laser Phys. Lett. (1)

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd : YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko and O. Parriaux, "High resonant reflection of a confined free space beam by a high contrast segmented waveguide," Opt. Quantum Electron. 35, 1025-1036 (2003).
[CrossRef]

Sov. J. Quantum Electron. (2)

G. A. Golubenko, A. S. Svakhin, A. V. Tishchenko, and V. A Sychugov, "Total reflection of light from the corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985)
[CrossRef]

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, "Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface," Sov. J. Quantum Electron. 16, 1063 (1986).
[CrossRef]

SPIE Vol. (1)

O. Parriaux, A. V. Tishchenko, and F. Pigeon, "Associating a lossless polarizing function in multilayer laser mirrors by means of a resonant grating," Photonics Europe Proc.SPIE Vol. 6187, 61870B (Apr. 25, 2006).

Vakuum in forschung und praxis (1)

S. Schlichtherle, G. N. Strauss, H. Tafelmaier, D. Huber, and H. K. Pulker, "Reactive ion voltage ion plating," Vakuum in forschung und praxis 17, 210-217 (2005).

Other (3)

F. R. Flory, Thin films for optical systems (Marcel Dekker, 1995).

A. V. Tishchenko and N. Lyndin, "The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also !)," Workshop on grating theory, Clermont-Ferrand, France (June 2004)

E. Gamet, J. C. Pommier, S. Reynaud, S. Tonchev, O. Parriaux, J.-F. Bisson, K. I. Ueda, and T. Ito, "Polarizing multilayer laser mirror using constructive zeroth order resonant grating reflexion," Diffractive Optics abstracts pp 157-158, Warsaw, Poland (3-7 Sept. 2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Operation principle of a polarizing mirror integrated to the active medium [4] (b) Operation principle of the narrow band resonant grating of the present study. In both structures light experiences constructive interference between multilayer and resonant mirrors.

Fig. 2.
Fig. 2.

AFM scan of the last Ta2O5 layer of the multilayer (a) and of the etched SiO2 substrate (b). The grating depth in the last Ta2O5 layer is 23 nm whereas it is 17 nm on the substrate.

Fig. 3.
Fig. 3.

Calculated transmission coefficient of the complete resonant mirror (doted line) and of the sole waveguide submirror (full line) versus wavelength in the resonance neighborhood.

Fig. 4.
Fig. 4.

Reflection coefficient of the optimised structure versus wavelength in the visible and IR regions with a peak at 1050 nm.

Fig. 5.
Fig. 5.

Transverse electric field profile in the multilayer. Grey curve: TE0 modal field, Black curve: field profile upon excitation from the air side. The horizontal lines show the different layers of the stack.

Fig. 6.
Fig. 6.

Measured transmission spectra in TE polarization with the incidence angle as a parameter showing the normal incidence central dip at 1047 nm wavelength and three symmetrical pairs of dips.

Fig. 7.
Fig. 7.

Transmission coefficient of the structure around 1050 nm after suppression of backside reflection (insert). The grey curve is the theoretical transmission coefficient taking into account the measured grating parameters (period of 559.1 nm and depth of 17 nm) and the layers thicknesses of table 1 under normal incidence. The dashed curve is the theoretical spectrum obtained under an incidence angle of 0.015°

Metrics