Abstract

We characterize the loading, containment and optical properties of all-optical atom traps implemented by diffractive focusing with one-dimensional (1D) microstructures milled on gold films. These on-chip Fresnel lenses with focal lengths of the order of a few hundred microns produce optical-gradient-dipole traps. Cold atoms are loaded from a mirror magneto-optical trap (MMOT) centered a few hundred microns above the gold mirror surface. Details of loading optimization are reported and perspectives for future development of these structures are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hänsel, P. Hommelhoff, T.W. Hänsch and J. Reichel, "Bose-Einstein condensation on a microelectronic chip" Nature 413, 498-501 (2001).
    [CrossRef] [PubMed]
  2. Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
    [CrossRef] [PubMed]
  3. M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
    [CrossRef]
  4. J. J. McClelland, S. B. Hill, M. Pichler, and R. J. Celotta, "Nanotechnology with atom optics" Sci. Technol. Adv. Mater. 5, 575-580 (2004).
    [CrossRef]
  5. R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
    [CrossRef]
  6. J. D. Weinstein and K. G. Libbrecht, "Microscopic magnetic traps for neutral atoms" Phys. Rev. A 52, 4004-4009 (1995).
    [CrossRef] [PubMed]
  7. J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic Micromanipulation with Magnetic Surface Traps" Phys. Rev. Lett. 83, 3398-33401 (1999).
    [CrossRef]
  8. D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
    [CrossRef]
  9. R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
    [CrossRef] [PubMed]
  10. T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
    [CrossRef] [PubMed]
  11. Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
    [CrossRef] [PubMed]
  12. Technical Digest, Integrated Photonics Research and Applications and Nanophotonics (Optical Society of America, Washington, DC, 2006).
  13. S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
    [CrossRef]
  14. Y. B. Ovchinnikov, "Coherent manipulation of atoms by copropagating laser beams" Phys. Rev. A 73, 0334041-1-0 (2006).
    [CrossRef]
  15. Details of this phenomenon are described in O. Alloschery, R. Mathevet, and J.Weiner,"All-optical atom surface traps implemented with one-dimensional planar diffractive microstructures" arXiv physics/0611092(2006).
  16. The capture efficiency, as distinct from the overall loading efficiency, was determined by using selective atom fluorescence to image the Fresnel intensity pattern superimposed on the MMOT cold-atom cloud. Details of this measurement have been reported in arXiv physics/0611092(2006).
  17. R. Grimm and M. Weiedemüller, "Optical Dipole Traps for Neutral Atoms" Adv. At. Mol. Phys. 42, 95-113 (2000).
    [CrossRef]
  18. H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  19. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
    [CrossRef]

2006 (4)

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Y. B. Ovchinnikov, "Coherent manipulation of atoms by copropagating laser beams" Phys. Rev. A 73, 0334041-1-0 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

2005 (3)

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
[CrossRef]

2004 (1)

J. J. McClelland, S. B. Hill, M. Pichler, and R. J. Celotta, "Nanotechnology with atom optics" Sci. Technol. Adv. Mater. 5, 575-580 (2004).
[CrossRef]

2002 (3)

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

2001 (1)

W. Hänsel, P. Hommelhoff, T.W. Hänsch and J. Reichel, "Bose-Einstein condensation on a microelectronic chip" Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

2000 (2)

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
[CrossRef]

R. Grimm and M. Weiedemüller, "Optical Dipole Traps for Neutral Atoms" Adv. At. Mol. Phys. 42, 95-113 (2000).
[CrossRef]

1999 (1)

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic Micromanipulation with Magnetic Surface Traps" Phys. Rev. Lett. 83, 3398-33401 (1999).
[CrossRef]

1995 (1)

J. D. Weinstein and K. G. Libbrecht, "Microscopic magnetic traps for neutral atoms" Phys. Rev. A 52, 4004-4009 (1995).
[CrossRef] [PubMed]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

Alt, W.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Anderson, D. Z.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Birkl, G.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

Brenner, K-H.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Bright, V. M.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Buchkremer, F. B. J.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

Cassettari, D.

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
[CrossRef]

Celotta, R. J.

J. J. McClelland, S. B. Hill, M. Pichler, and R. J. Celotta, "Nanotechnology with atom optics" Sci. Technol. Adv. Mater. 5, 575-580 (2004).
[CrossRef]

Chenet, A.

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
[CrossRef]

Chikkatur, A. P.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Cornell, E. A.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Curtis, E. A.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Diot, Q.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Dotsenko, I.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Dumke, R.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Eriksson, S.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Ertmer, W.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

Fernholz, T.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Folman, R.

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
[CrossRef]

Forster, L.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

Gollasch, C. O.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Gorlitz, A.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Grimm, R.

R. Grimm and M. Weiedemüller, "Optical Dipole Traps for Neutral Atoms" Adv. At. Mol. Phys. 42, 95-113 (2000).
[CrossRef]

Groth, S.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Gupta, S.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Gustavson, T. L.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Haase, A.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
[CrossRef]

Hänsch, T. W.

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic Micromanipulation with Magnetic Surface Traps" Phys. Rev. Lett. 83, 3398-33401 (1999).
[CrossRef]

Hänsch, T.W.

R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
[CrossRef]

W. Hänsel, P. Hommelhoff, T.W. Hänsch and J. Reichel, "Bose-Einstein condensation on a microelectronic chip" Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

Hänsel, W.

R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
[CrossRef]

W. Hänsel, P. Hommelhoff, T.W. Hänsch and J. Reichel, "Bose-Einstein condensation on a microelectronic chip" Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic Micromanipulation with Magnetic Surface Traps" Phys. Rev. Lett. 83, 3398-33401 (1999).
[CrossRef]

Heine, D.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Hessmo, B.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
[CrossRef]

Hill, S. B.

J. J. McClelland, S. B. Hill, M. Pichler, and R. J. Celotta, "Nanotechnology with atom optics" Sci. Technol. Adv. Mater. 5, 575-580 (2004).
[CrossRef]

Hinds, E. A

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Hommelhoff, P.

W. Hänsel, P. Hommelhoff, T.W. Hänsch and J. Reichel, "Bose-Einstein condensation on a microelectronic chip" Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

Ketterle, W.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Khudaverdyan, M.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Kishimoto, T.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Kraft, M.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Leanhardt, A. E.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Lezec, H. J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Libbrecht, K. G.

J. D. Weinstein and K. G. Libbrecht, "Microscopic magnetic traps for neutral atoms" Phys. Rev. A 52, 4004-4009 (1995).
[CrossRef] [PubMed]

Linke, R. A

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, X.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Long, R.

R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

McClelland, J. J.

J. J. McClelland, S. B. Hill, M. Pichler, and R. J. Celotta, "Nanotechnology with atom optics" Sci. Technol. Adv. Mater. 5, 575-580 (2004).
[CrossRef]

Meschede, D.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Miroshnychenko, Y.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Moktadir, Z.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Muther, T.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

O’Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

Ovchinnikov, Y. B.

Y. B. Ovchinnikov, "Coherent manipulation of atoms by copropagating laser beams" Phys. Rev. A 73, 0334041-1-0 (2006).
[CrossRef]

Pichler, M.

J. J. McClelland, S. B. Hill, M. Pichler, and R. J. Celotta, "Nanotechnology with atom optics" Sci. Technol. Adv. Mater. 5, 575-580 (2004).
[CrossRef]

Powell, H. F.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Prentiss, M.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Pritchard, D. E.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Rauschenbeutel, A.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Reichel, J.

R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
[CrossRef]

W. Hänsel, P. Hommelhoff, T.W. Hänsch and J. Reichel, "Bose-Einstein condensation on a microelectronic chip" Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic Micromanipulation with Magnetic Surface Traps" Phys. Rev. Lett. 83, 3398-33401 (1999).
[CrossRef]

Rom, T.

R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
[CrossRef]

Sahagun, D.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Saravanan, R. A.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Sauer, B. E.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Schmiedmayer, J.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Schrader, D.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Schwarz, M.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Segal, S. R.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Sinclair, C. D. J.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Trupke, M.

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

Volk, M.

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

Wang, Y-J.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Weiedemüller, M.

R. Grimm and M. Weiedemüller, "Optical Dipole Traps for Neutral Atoms" Adv. At. Mol. Phys. 42, 95-113 (2000).
[CrossRef]

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

Weinstein, J. D.

J. D. Weinstein and K. G. Libbrecht, "Microscopic magnetic traps for neutral atoms" Phys. Rev. A 52, 4004-4009 (1995).
[CrossRef] [PubMed]

Wicker, K.

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Wilzbach, M

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Wu, S.

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Adv. At. Mol. Phys. (1)

R. Grimm and M. Weiedemüller, "Optical Dipole Traps for Neutral Atoms" Adv. At. Mol. Phys. 42, 95-113 (2000).
[CrossRef]

Appl. Phys. B (1)

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kr¨uger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures" Appl. Phys. B 70, 721-730 (2000)
[CrossRef]

Eur. Phys. J. D (2)

R. Long, T. Rom,W. Hänsel, T.W. Hänsch, J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms" Eur. Phys. J. D 35, 125-133 (2005).
[CrossRef]

S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips" Eur. Phys. J. D 35, 135-139 (2005).
[CrossRef]

Fortschr. Phys. (1)

M Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, "Detecting neutral atomson an atom chip" Fortschr. Phys. 54, 746-764 (2006).
[CrossRef]

Nature (2)

W. Hänsel, P. Hommelhoff, T.W. Hänsch and J. Reichel, "Bose-Einstein condensation on a microelectronic chip" Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, "Quantum engineering: An atom-sorting machine" Nature 442, 151-151 (2006).
[CrossRef] [PubMed]

Nature Phys. (1)

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model" Nature Phys. 2, 262-267 (2006).
[CrossRef]

Phys. Rev. A (2)

Y. B. Ovchinnikov, "Coherent manipulation of atoms by copropagating laser beams" Phys. Rev. A 73, 0334041-1-0 (2006).
[CrossRef]

J. D. Weinstein and K. G. Libbrecht, "Microscopic magnetic traps for neutral atoms" Phys. Rev. A 52, 4004-4009 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic Micromanipulation with Magnetic Surface Traps" Phys. Rev. Lett. 83, 3398-33401 (1999).
[CrossRef]

R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical Realization of Arrays of Selectrively Addresable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits" Phys. Rev. Lett. 89, 097903-1-4 (2002).
[CrossRef] [PubMed]

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, "Transport of Bose-Einstein Condensates with Optical Tweezers" Phys. Rev. Lett. 88, 020401-1-4 (2002).
[CrossRef] [PubMed]

Y-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal and S. Wu, "Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate" Phys. Rev. Lett. 94, 090405-1-4 (2005).
[CrossRef] [PubMed]

Sci. Technol. Adv. Mater. (1)

J. J. McClelland, S. B. Hill, M. Pichler, and R. J. Celotta, "Nanotechnology with atom optics" Sci. Technol. Adv. Mater. 5, 575-580 (2004).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture" Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other (3)

Technical Digest, Integrated Photonics Research and Applications and Nanophotonics (Optical Society of America, Washington, DC, 2006).

Details of this phenomenon are described in O. Alloschery, R. Mathevet, and J.Weiner,"All-optical atom surface traps implemented with one-dimensional planar diffractive microstructures" arXiv physics/0611092(2006).

The capture efficiency, as distinct from the overall loading efficiency, was determined by using selective atom fluorescence to image the Fresnel intensity pattern superimposed on the MMOT cold-atom cloud. Details of this measurement have been reported in arXiv physics/0611092(2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the MMOT/FFORT setup. A-Gold mirror focused-ion-beam (FIB)-milled at center with 1-D Fresnel diffraction lens. B-Laser beams and magnet coils (blue rings) forming the MMOT. Green cloud of cold Cs atoms is trapped at the MMOT center at a distance typically 100–500µm from the mirror surface. C-Fresnel far off-resonant trap (FFORT) laser beam illuminating the mirror and Fresnel structure from the rear. D-Zoom of the Fresnel structure at the mirror center with 500 µm focal length. Overall Fresnel motif dimensions: 209 µm×206 µm; central slit width: ≃28 µm with 12 slits on each side. FFORT laser beam: focused gaussian TEM00 on the Fresnel structure with 230 µm intensity (1/e 2) spot diameter.

Fig. 2.
Fig. 2.

Schematic of the Fresnel structure optical characterization system. The piezoelectric element dithers the diffusing screen to eliminate speckle in the spatial intensity distribution.

Fig. 3.
Fig. 3.

Left panel: Measured spatial intensity map in the yz plane. Coordinate axes indicated in Fig. 1 and measurement setup in Fig. 2. Focal distance is designed for 500 µm. Right panel: Numerical simulation of the diffractive pattern for the structure measured in left panel.

Fig. 4.
Fig. 4.

Left panel: Intensity profiles in the transverse focal plane (y-axis). Red curve shows the results of the simulation in Fig. 3. Black dashed curve is the simulation averaged over the spatial resolution of the optical measurement system. Green curve is the measured intensity, normalized to unity at the peak. Right panel: Intensity profile along the longitudinal symmetry axis (z-axis). Red curve shows the numerical simulation of Fig. 3. Green curve shows the measured intensity, normalized to unity at the peak. Dimensions of the simulated focus spot (FWHM) in the x, y, z directions are are 192 µm, 2.0 µm, 35 µm, respectively.

Fig. 5.
Fig. 5.

Schematic of the absorption imaging system used to detect cold atoms in the MMOT and in the FORT. Green spot at focus of intense off-resonance red laser beam represents trapped atoms. Two green spots on the CCD plane represent the absorption images focused by the blue lens. Note that CCD plane is rotated by an angle of 45 degrees with respect to the mirror plane. Therefore trap images are foreshortened by √2 in the z direction.

Fig. 6.
Fig. 6.

Left panel: Double absorption image (see Fig. 5). Left (right) image side is the projection of atom cloud on the u-axis (v-axis), corrected by a √2 foreshortening. Right panel: Number of atoms contained in the MMOT as function of distance from the mirror surface. Blue triangles correspond to the mechanical approach (via a vernier screw translation) of the mirror surface to the MMOT, and red circles correspond to a translation of the magnetic field minimum (via a small external bias field).

Fig. 7.
Fig. 7.

Left panel: Double absorption image (see Fig. 5). Left(right) image side is the projection of atom cloud on the u-axis (v-axis), corrected by a √2 foreshortening. Image recorded 30 ms afterMMOT extinction. Right panel: Atom number vs. FFORT laser power.

Fig. 8.
Fig. 8.

Left panel: Atom number vs. FFORT detuning. Right panel: Trap temperatures vs. FFORT red detuning.

Fig. 9.
Fig. 9.

Left panel: Numerical simulation of the diffractive pattern for a 1-D array of five 200 µm focal length structures measured in right panel. Right panel: Intensity profile in the transverse focal plane (y-axis) for 1D array of five 200 µm focal length lenses. Red curve shows the results of the simulation in left panel. Similar to the discussion of section 2.1, black dashed curve is the simulation averaged over the effective spatial resolution of the optical measurement system, taking into account magnification and CCD pixel size. Green curve is the measured intensity, normalized to unity at the peak.

Metrics