Abstract

We design novel photonic crystal slab heterostructures, substituting the air in the holes with materials of refractive index higher than n=1. This can be achieved by infiltrating the photonic crystal slab (PCS) with liquid crystal, polymer or nano-porous silica. We find that the heterostructures designed in this way can have quality factors up to Q=10 6. This high-Q result is comparable with the result of previously reported designs in which the lattice is elongated in one direction. Unlike conventional heterostructures, our design does not require nanometre-scale changes in the geometry. Additionally, infiltrated PCS can be constructed at any time after PCS fabrication.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
    [CrossRef] [PubMed]
  2. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-channel resonant-tunneling filter using mode-gap of width-tuned photonic-crystal waveguide,” Opt. Express 13, 4202–4209 (2005).
    [CrossRef] [PubMed]
  3. H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
    [CrossRef]
  4. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  5. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
    [CrossRef] [PubMed]
  6. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
    [CrossRef] [PubMed]
  7. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Mägi, D. J. Moss, and B. J. Eggleton, “Efficient coupling o chalcogenide glass photonic crystal waveguide via silica optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).
    [CrossRef] [PubMed]
  8. M. Loncar and A. Scherer, “Microfabricated optical cavities and photonic crystals” in Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).
  9. M. Loncar and A. Scherer, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
    [CrossRef]
  10. B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
    [CrossRef]
  11. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [CrossRef] [PubMed]
  12. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
    [CrossRef] [PubMed]
  13. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
    [CrossRef] [PubMed]
  14. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
    [CrossRef]
  15. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
    [CrossRef]
  16. E. Kuramochi, M. Natomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  17. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 92006).
    [PubMed]
  18. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. (to be published).
    [PubMed]
  19. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Modern Phys. 78, 455–481 (2006).
    [CrossRef]
  20. G. P. Harmon, “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, J. P. Harmon and G. K. Noren, eds. (American Chemical Society, 2001) pp. 1–23.
  21. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
    [CrossRef]
  22. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997).
    [CrossRef]

2006 (4)

E. Kuramochi, M. Natomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Modern Phys. 78, 455–481 (2006).
[CrossRef]

C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Mägi, D. J. Moss, and B. J. Eggleton, “Efficient coupling o chalcogenide glass photonic crystal waveguide via silica optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (3)

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
[CrossRef] [PubMed]

2003 (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

M. Loncar and A. Scherer, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[CrossRef] [PubMed]

2001 (1)

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

2000 (1)

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

1997 (1)

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 92006).
[PubMed]

Baehr-Jones, T.

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

Bin, F.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

de Sterke, C. M.

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. (to be published).
[PubMed]

Deng, Z.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Eggleton, B. J.

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Freeman, D.

Grillet, C.

Harmon, G. P.

G. P. Harmon, “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, J. P. Harmon and G. K. Noren, eds. (American Chemical Society, 2001) pp. 1–23.

Hochberg, M.

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

Huh, J.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

Hwang, J-K.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

Istrate, E.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Modern Phys. 78, 455–481 (2006).
[CrossRef]

Kim, J-S.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

Kuramochi, E.

Lee, Y-h.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

Loncar, M.

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

M. Loncar and A. Scherer, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

M. Loncar and A. Scherer, “Microfabricated optical cavities and photonic crystals” in Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Mandelshtam, V. A.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997).
[CrossRef]

Maune, B.

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

Mitsugi, S.

Moss, D. J.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Natomi, M.

E. Kuramochi, M. Natomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 92006).
[PubMed]

Notomi, M.

Park, H-G.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

Qiu, M.

Qiu, Y.

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

Ryu, H-Y

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

Salzman, J.

Sargent, E. H.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Modern Phys. 78, 455–481 (2006).
[CrossRef]

Scherer, A.

M. Loncar and A. Scherer, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

M. Loncar and A. Scherer, “Microfabricated optical cavities and photonic crystals” in Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).

Shen, J.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Shinya, A.

Smith, C.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 92006).
[PubMed]

Steel, M. J.

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. (to be published).
[PubMed]

Tanabe, T.

E. Kuramochi, M. Natomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
[CrossRef] [PubMed]

Tanaka, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Taylor, H. S.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997).
[CrossRef]

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. (to be published).
[PubMed]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Wang, J.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Wtzens, J.

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

Wu, G.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yang, T.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zhang, F.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Zhang, Q.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Zhang, Z.

Zhou, B.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Zhou, D.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Appl. Phys. Lett. (5)

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[CrossRef]

M. Loncar and A. Scherer, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of inplane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

E. Kuramochi, M. Natomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

J. Chem. Phys. (1)

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, “Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment,” J. Non-Cryst. Solids 275, 169–174 (2000).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Nature Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Rev. Modern Phys. (1)

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Modern Phys. 78, 455–481 (2006).
[CrossRef]

Science (1)

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[CrossRef] [PubMed]

Other (3)

M. Loncar and A. Scherer, “Microfabricated optical cavities and photonic crystals” in Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. (to be published).
[PubMed]

G. P. Harmon, “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, J. P. Harmon and G. K. Noren, eds. (American Chemical Society, 2001) pp. 1–23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of PCS with a W1 waveguide in the Γ-K direction and refractive index distribution in the plane of the structures considered (b) m=1 and (c) m=4.

Fig. 2
Fig. 2

(a) Dispersion curves for W11 within the region of the lowest gap of the regular structure PC1 (empty triangles) and W12 of the structure PC2 (full circles), nholes =1.6; the dashed line represents the light line, the horizontal solid lines represent the lower band gap edge for PC1 and PC2, (b) quality factor Q (rectangles) and modal volume V (crosses) as a function of the refractive index of the central holes for m=1.

Fig. 3
Fig. 3

Quality factor Q (rectangles) (a) and resonant frequencies (crosses) as a function of the number of periods within the cavity m, for fixed nholes =1.4, (b) as a function of the refractive index of the central holes for m=4 cavity.

Metrics