Abstract

We describe an ultrasmall polarization splitter based on a simple directional coupler consisting of silicon wire waveguides. The size is only 7×16 µm 2, and the polarization extinction ratio is about 15 dB for a single coupler. A double-coupler structure improves the extinction ratio to over 20 dB. The excess loss is smaller than 0.5 dB for both types of device. In the device, the shape of the high-speed waveform is retained at any angle of polarization. Our polarization splitter represents a first step towards accomplishing an ultrasmall optical circuit with polarization diversity based on silicon wire waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  2. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, and S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. E87-C, 351-358 (2004).
  3. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
    [CrossRef]
  4. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
    [CrossRef] [PubMed]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  6. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
    [CrossRef]
  7. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  8. M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, "Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators," OFC2005 Technical Digest PDP11 (2005).
  9. M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization splitter, " Opt. Lett. 30, 967-969 (2005).
    [CrossRef] [PubMed]
  10. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
    [CrossRef]
  11. I. Kiyat, A. Aydinli, and N. Dagli, "A compact Silicon-on-Insulator Polarization Splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
    [CrossRef]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]

2006 (1)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

2005 (4)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, "A compact Silicon-on-Insulator Polarization Splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization splitter, " Opt. Lett. 30, 967-969 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

2003 (2)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

2000 (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

1997 (1)

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, "A compact Silicon-on-Insulator Polarization Splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

Baets, R.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, "A compact Silicon-on-Insulator Polarization Splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Groen, F. H.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
[CrossRef] [PubMed]

Kimerling, L. C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, "A compact Silicon-on-Insulator Polarization Splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Metaal, E. G.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Oei, Y. S.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Pedersen, J. W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Taillaert, D.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Takahashi, J.

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

van der Tol, J. J. G. M.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

van Gaalen, J. J.-W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Watts, M. R.

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, "A compact Silicon-on-Insulator Polarization Splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, "Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators," OFC2005 Technical Digest PDP11 (2005).

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, and S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. E87-C, 351-358 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Principle of polarization splitter based directional coupler consisting of Si wire waveguides.

Fig. 2.
Fig. 2.

Results of FDTD simulations.

Fig. 3.
Fig. 3.

Transmittance of the cross port simulated by EME as a function of Si core width and coupler gap.

Fig. 4.
Fig. 4.

SEM image of a fabricated device.

Fig. 5.
Fig. 5.

Transmission spectra of cross and bar ports calibrated by the output power of a simple Si wire.

Fig. 6.
Fig. 6.

Extinction ratio for a single-stage coupler measured by rotating the polarization of the incident light.

Fig. 7.
Fig. 7.

(a) Schematic diagram and (b) transmission spectrum of the two-stage coupler.

Fig. 8.
Fig. 8.

Extinction ratio for a two-stage coupler measured by rotating the polarization of the incident light.

Fig. 9.
Fig. 9.

Experimental setup to measure the characteristics for high-speed signal.

Fig. 10.
Fig. 10.

10-Gbps-eye-diagram with/without the polarization splitter.

Metrics