Abstract

We demonstrate ultrasmall five-port channel drop filters (CDFs) based on a two-dimensional photonic crystal slab. We combine seven photonic crystals with different lattice constants and use light reflections at the different photonic crystal boundaries to control the interference process and achieve a high dropping efficiency. We operate the CDFs in two modes; one requires careful control of the interference process, whereas the other does not. The former can output a narrower signal spectrum than the latter, and CDF design is easier with the latter. Both CDFs achieve a high dropping efficiency and can function in the CL-band.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Song, S. Noda, and T. Asano, "Photonic devices based on In-plane hetero photonic crystals," Science 300, 1537 (2003).
    [CrossRef] [PubMed]
  2. A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005).
    [CrossRef] [PubMed]
  3. H. Takano, B-S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express,  14, 3491-3496 (2006).
    [CrossRef] [PubMed]
  4. H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
    [CrossRef]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  6. H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
    [CrossRef]
  7. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
    [CrossRef] [PubMed]
  8. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  9. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  10. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on silicon chip realized using photonic crystal nanocavities," Appl. Phys Lett. 87, 15112 (2005).
    [CrossRef]
  11. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, "Opt. Lett. 30,2575 (2005).
    [CrossRef] [PubMed]
  12. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  13. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
    [CrossRef] [PubMed]
  14. G-H Kim, Y-H Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 26, 6624-6631 (2004).
    [CrossRef]

2006 (3)

2005 (5)

2004 (3)

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

G-H Kim, Y-H Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 26, 6624-6631 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[CrossRef] [PubMed]

2003 (2)

B. S. Song, S. Noda, and T. Asano, "Photonic devices based on In-plane hetero photonic crystals," Science 300, 1537 (2003).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Akahane, Y.

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

Asano, T.

H. Takano, B-S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express,  14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, "Photonic devices based on In-plane hetero photonic crystals," Science 300, 1537 (2003).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Kawanishi, S.

Kim, G-H

G-H Kim, Y-H Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 26, 6624-6631 (2004).
[CrossRef]

Kira, G.

Kuramochi, E.

Lee, Y-H

G-H Kim, Y-H Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 26, 6624-6631 (2004).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on silicon chip realized using photonic crystal nanocavities," Appl. Phys Lett. 87, 15112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, "Opt. Lett. 30,2575 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[CrossRef] [PubMed]

Noda, S.

H. Takano, B-S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express,  14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, "Photonic devices based on In-plane hetero photonic crystals," Science 300, 1537 (2003).
[CrossRef] [PubMed]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on silicon chip realized using photonic crystal nanocavities," Appl. Phys Lett. 87, 15112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, "Opt. Lett. 30,2575 (2005).
[CrossRef] [PubMed]

G-H Kim, Y-H Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 26, 6624-6631 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[CrossRef] [PubMed]

Ryu, H-Y.

Shinya, A.

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on silicon chip realized using photonic crystal nanocavities," Appl. Phys Lett. 87, 15112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, "Opt. Lett. 30,2575 (2005).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[CrossRef] [PubMed]

G-H Kim, Y-H Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 26, 6624-6631 (2004).
[CrossRef]

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Song, B. S.

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, "Photonic devices based on In-plane hetero photonic crystals," Science 300, 1537 (2003).
[CrossRef] [PubMed]

Song, B-S.

Takano, H.

H. Takano, B-S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express,  14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

Takara, H.

Tanabe, T.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Yokohama, I.

Appl. Phys Lett. (1)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on silicon chip realized using photonic crystal nanocavities," Appl. Phys Lett. 87, 15112 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Science (1)

B. S. Song, S. Noda, and T. Asano, "Photonic devices based on In-plane hetero photonic crystals," Science 300, 1537 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron micrograph of our sample. The slab is about 200 nm thick and the air hole diameter is about 210 nm. The solid lines show the boundaries between the seven different PhCs. Seven PhCs are arranged from left to right in descending order of lattice constant. The lattice constant of the second PhC is 420 nm. The lattice constants decrease in decrements of 2% from left to right. The device size from the first to the fifth resonator is only about 18 µm.

Fig. 2.
Fig. 2.

Structures of the waveguides and the resonators. Wc and W are the widths of the resonator and the waveguide. a is the lattice constant of the PhC. The position of the innermost hole in the resonator is optimized to increase the Q-factor [6].

Fig. 3.
Fig. 3.

(a) and (b) show the schematic structures of CDFs operating in modes 1 and 2. The lattice constant of PhCA is larger than that of PhCB. (c) and (d) are the equivalent structures of (a) and (b), respectively. The light resonating with the resonator cannot propagate through the waveguide in PhCB.

Fig. 4.
Fig. 4.

Transmission spectra of CDF operating in mode 1. W=1.00W0 , Wc =1.00W0 . The black and gray lines are the transmission spectra of the waveguides in the first PhC (WG1) and the second PhC (WG2). (1) The red, (2) magenta, (3) blue, (4) cyan, and (5) green signals are output from the left to the right drop waveguides in Fig. 1. The dotted line is the band edge of the long wavelength side of WG2. The red signal is on the left hand side of the band edge of WG2. The center wavelengths of the signals are 1569,1540,1513,1485,1457 nm, their line widths are 4.4, 4.2, 4.8, 2.6, 4.3 nm, and their transmittances are 61.5, 60.0 89.1, 87.6 %. The transmittance of port 5 is not calculated.

Fig. 5.
Fig. 5.

Transmission spectra of a CDF operating in mode 2. W=0.98W0 , Wc =1.05W0 . The red signal is on the right hand side of the band edge of WG2. The center wavelengths of the signals are 1587, 1555, 1528, 1499, 1471 nm, their line widths are 6.2, 8.3 7.9, 8.3, 8.2 nm, and their transmittances are 99.8, 77.9, 86.3, 95.3 %. The transmittance of port 5 is not calculated.

Fig. 6.
Fig. 6.

Transmission spectra of CDF operating in mode 1 with a misaligned interference condition. W=0.98W0 , Wc =1.00W0 . The dropping efficiency is reduced at the wavelengths indicated by the arrows. The center wavelengths of signals are 1572, 1543, 1515, 1485, 1456 nm, their line widths are 3.6, 2.7, 2.9, 1.5, 2.1 nm, and their transmittances are 52.7, 58.8 58.9, 75.5 %. The transmittance of port 5 is not calculated.

Fig. 7.
Fig. 7.

Transmission spectra of CDFs operating in modes 1 and 2. The variation in the lattice constant is set at 1%. The yellow lines are the transmission spectra at the through port. (a) CDF operating in mode 1. W=1.00W0 , Wc =1.00W0 . The center wavelengths of signals are 1586, 1571, 1558, 1544, 1528, 1472 nm, their line widths are 2.6, 4.3, 4.6, 4.4, 3.3 nm, and their transmittances are 82.3, 68.0, 54.8, 61.3, 59.4 %. (b) CDF operating in mode 2. W=1.00W0 , Wc =1.05W0 . The center wavelengths of signals are 1594, 1584, 1570, 1552, 1539, 1472 nm, their line widths are 10.1, 11.4, 11.5, 11.5, 12.6 nm, and their transmittances are 100, 72.5, 71.7, 71.3, 77.0 %.

Metrics