Abstract

We report on supercontinuum generation in individual fibers of a commercial Schott imaging fiber taper. Supercontinuum spectrum covering a wavelength range from about 500 nm to 1 µm was obtained. Unlike conventional approaches which use either a single micro-structured photonic crystal fiber (PCF) or an individual fiber or PCF taper, the availability of many fibers in an imaging taper can open new possibilities to independently and controllably generate supercontinuum arrays.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source

William J. Wadsworth, Arturo Ortigosa-Blanch, Jonathan C. Knight, Tim A. Birks, T.-P. Martin Man, and Phillip St. J. Russell
J. Opt. Soc. Am. B 19(9) 2148-2155 (2002)

Tapered enlarged ends in multimode optical fibers

M. Brenci, R. Falciai, and A. M. Scheggi
Appl. Opt. 21(2) 317-319 (1982)

The photonic lantern

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson
Adv. Opt. Photon. 7(2) 107-167 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, New York, 2006).
    [Crossref]
  2. T. Udem, R. Holzwarth, and T.W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref] [PubMed]
  3. Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
    [Crossref]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
    [Crossref]
  5. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
    [Crossref] [PubMed]
  6. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
    [Crossref] [PubMed]
  7. P. Li., K. Shi, and Z. Liu, “Manipulation and spectroscopy of a single particle by use of white-light optical tweezers,” Opt. Lett. 30, 156–158 (2005).
    [Crossref] [PubMed]
  8. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [Crossref]
  9. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Boston, 2003).
    [Crossref]
  10. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref] [PubMed]
  11. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  12. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3µm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14, 4928–4934 (2006).
    [Crossref] [PubMed]
  13. K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 226–254 (2005).
    [Crossref]
  14. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23, 1692–1699 (2006).
    [Crossref]
  15. D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
    [Crossref]
  16. http://www.us.schott.com/fiberoptics/english/products/healthcare/imagingfiberoptics/fusedcomponents/tapers.html
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd Ed, (Academic Press, San Diego, 1995).

2006 (2)

2005 (2)

2004 (2)

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
[Crossref] [PubMed]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

2003 (2)

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[Crossref]

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T.W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

2001 (1)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

2000 (2)

1996 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd Ed, (Academic Press, San Diego, 1995).

Akimov, D. A.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, New York, 2006).
[Crossref]

Atkin, D. M.

Bang, O.

Birks, T. A.

Bjarklev, A.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Boston, 2003).
[Crossref]

Bjarklev, A. S.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Boston, 2003).
[Crossref]

Broeng, J.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Boston, 2003).
[Crossref]

Chudoba, C.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

Dukel’kii, K. V.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Efimov, A.

Frosz, M. H.

Fujimoto, J. G.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

Furusawa, K.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[Crossref]

George, A. K.

Ghanta, R. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

Hänsch, T.W.

T. Udem, R. Holzwarth, and T.W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Hansen, K. P.

K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 226–254 (2005).
[Crossref]

Hartl, I.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T.W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Joly, N. Y.

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Khokhlov, A. V.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Kiefer, W.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Knight, J. C.

Ko, T. H.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

Kondrat’v, Y. N.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Kumar, V. V. R. K.

Li, P.

Li, X. D.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

Li., P.

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Liu, Z.

Maksimenka, R.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Monro, T. M.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[Crossref]

Omenetto, F. G.

Petropoulos, P.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[Crossref]

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

Richardson, D. J.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[Crossref]

Ross, M.

Russell, P. S.

Russell, P. St. J.

Sandoghdar, V.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Schmitt, M.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Shevandin, V. S.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Shi, K.

Sørensen, T.

Stentz, A. J.

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Taylor, A. J.

Udem, T.

T. Udem, R. Holzwarth, and T.W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Wadsworth, W. J.

Wehner, M. R.

Windeler, R. S.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

Wolchover, N. A.

Yin, S.

Yusoff, Z.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[Crossref]

Zheltikov, A. M.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

Appl. Phys. B: Lasers and Optics (1)

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[Crossref]

J. Opt. Fiber. Commun. Rep. (1)

K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 226–254 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

T. Udem, R. Holzwarth, and T.W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett (1)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[Crossref] [PubMed]

Other (4)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Boston, 2003).
[Crossref]

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, New York, 2006).
[Crossref]

http://www.us.schott.com/fiberoptics/english/products/healthcare/imagingfiberoptics/fusedcomponents/tapers.html

G. P. Agrawal, Nonlinear Fiber Optics, 2nd Ed, (Academic Press, San Diego, 1995).

Supplementary Material (2)

» Media 1: AVI (2464 KB)     
» Media 2: AVI (1688 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A portion of the microscope images showing the individual fibers in two representative Schott imaging fiber tapers (the brighter region corresponding to core). The cross sections of the cores have a rectangular corner.

Fig. 2.
Fig. 2.

Some observed far-field patterns of the supercontinuum generated in an imaging fiber taper (model 25970MU, Schott). These pictures were captured at a few centimeters away from the taper output end. Similar supercontinuum pattern can sometimes exhibit dramatically different colors.

Fig. 3.
Fig. 3.

Representative calculated far field patterns. Qualitative agreement with some of the observed patterns in Fig. 2 can be seen.

Fig. 4.
Fig. 4.

Typical supercontinuum spectra of three different patterns. The spectra of the three patterns are quite different in the short wavelength part (500nm–700nm). They are all peaked around the pump wavelength near 800nm and extend to the visible and near infrared regimes.

Fig. 5.
Fig. 5.

Dependence of spectral broadening on pump power. The horizontal axis shows the average incoming laser power while the vertical axis represents the wavelength. The insets show the corresponding far field patterns.

Fig. 6.
Fig. 6.

Generation of double supercontinuum sources (a) schematic diagram of the experimental setup; (b1), (b2) and (b3) (Movie, 911K) show supercontinuum patterns generated in two different fibers; (c) rainbow (Movie, 849K) produced by passing the supercontinua through a grating; (d) a colored image produced by illuminating a diffractive optical element sample (Digital Optics Corporation) with the supercontinua. The two bright spots are the zero-order spots from the two supercontinua generated in the imaging taper which propagate at slightly different directions.

Metrics