Abstract

Type I (GE124) and Type II (KV) fused silica were thermally poled in a vacuum and in air under identical poling conditions. Secondorder nonlinear (SON) strength and nonlinear depth were found all to be the same. Samples were then stored in high and low humidity to study their SON stability.. The SON of poled GE124 was stable over time despite different poling atmospheres and humidity in storage. The SON of both the air-poled and vacuum-poled KV samples decayed over time in both low and high humidity, with the exception that the air-poled KV sample stored in low humidity remained stable. High humidity accelerated the decay process of the KV samples. A porous surface model was used to interpret the decay mechanism. The decay curves implied multiple carriers or a multipleporosity model for the decay mechanism.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  2. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
    [CrossRef]
  3. M. Qiu, F. Pi, G. Orriols, and M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998).
    [CrossRef]
  4. M. Qiu, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, "Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling," J. Opt. Soc. Am. B 19, 37-42 (2002).
    [CrossRef]
  5. Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002).
    [CrossRef]
  6. A. Narazaki, K. Tanaka, and K. Hirao, "Surface structure and second-order nonlinear optical properties of thermally poled WO3-TeO2 glasses doped with Na," J. Opt. Soc. Am. B 19, 54-62 (2002).
    [CrossRef]
  7. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
    [CrossRef]
  8. M. Janos, W. Xu, D. Wong, H. Inglis, and S. Fleming, "Growth and decay of the electrooptic effect in thermally poled B/Ge codoped fiber," J. Lightwave Technol. 17, 1037-1041 (1999).
    [CrossRef]
  9. O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
    [CrossRef]
  10. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
    [CrossRef]
  11. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, "Effect of poling conditions on second-harmonic generation in fused silica," Opt. Lett. 21, 468-470 (1996).
    [CrossRef] [PubMed]
  12. R. Kohlrausch, "Ueber das Dellmann'sche elektrometer," Ann. Phys. Chem. 72, 353-405 (1847).
    [CrossRef]
  13. G. Williams and D. C. Watts, "Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function," Trans. Faraday Soc. 66, 80-85 (1970).
    [CrossRef]
  14. C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005).
    [CrossRef]
  15. R. H. Stolen and H. K. Tom, "Self-organized phase-matched harmonic generation in optical fibers," Opt. Lett. 12, 585-587 (1987).
    [CrossRef] [PubMed]
  16. P.G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
    [CrossRef]
  17. H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
    [CrossRef]
  18. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
    [CrossRef]
  19. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films," J. Appl. Phys. 94, 013502 (2005).
    [CrossRef]
  20. H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
    [CrossRef]
  21. H. Y. Chen, J. S. Sue, Y. H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
    [CrossRef] [PubMed]

2005

C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films," J. Appl. Phys. 94, 013502 (2005).
[CrossRef]

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

2004

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

2003

H. Y. Chen, J. S. Sue, Y. H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
[CrossRef] [PubMed]

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

2002

1999

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
[CrossRef]

M. Janos, W. Xu, D. Wong, H. Inglis, and S. Fleming, "Growth and decay of the electrooptic effect in thermally poled B/Ge codoped fiber," J. Lightwave Technol. 17, 1037-1041 (1999).
[CrossRef]

1998

M. Qiu, F. Pi, G. Orriols, and M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998).
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

1996

1994

P.G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

1991

1987

1970

G. Williams and D. C. Watts, "Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function," Trans. Faraday Soc. 66, 80-85 (1970).
[CrossRef]

1962

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

1847

R. Kohlrausch, "Ueber das Dellmann'sche elektrometer," Ann. Phys. Chem. 72, 353-405 (1847).
[CrossRef]

Bibiche, M.

Bonfrate, G.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
[CrossRef]

Brueck, S. R. J.

Carvalho, I. C. S.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Chao, S.

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

H. Y. Chen, J. S. Sue, Y. H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
[CrossRef] [PubMed]

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

Chen, H. Y.

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

H. Y. Chen, J. S. Sue, Y. H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
[CrossRef] [PubMed]

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

Corbari, C.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

Deparis, O.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

Digonnet, M. J. F.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films," J. Appl. Phys. 94, 013502 (2005).
[CrossRef]

Fleming, S.

Garcia, F. C.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Hashimoto, C.

C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005).
[CrossRef]

Hering, E.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Hirao, K.

A. Narazaki, K. Tanaka, and K. Hirao, "Surface structure and second-order nonlinear optical properties of thermally poled WO3-TeO2 glasses doped with Na," J. Opt. Soc. Am. B 19, 54-62 (2002).
[CrossRef]

Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002).
[CrossRef]

Inglis, H.

Janos, M.

Kazansky, P. G.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
[CrossRef]

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, "Effect of poling conditions on second-harmonic generation in fused silica," Opt. Lett. 21, 468-470 (1996).
[CrossRef] [PubMed]

Kazansky, P.G.

P.G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Kino, G. S.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films," J. Appl. Phys. 94, 013502 (2005).
[CrossRef]

Kohlrausch, R.

R. Kohlrausch, "Ueber das Dellmann'sche elektrometer," Ann. Phys. Chem. 72, 353-405 (1847).
[CrossRef]

Kudlinski, A.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Lesche, B.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Lin, C. L.

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

Lin, Y. H.

H. Y. Chen, J. S. Sue, Y. H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
[CrossRef] [PubMed]

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

Margulis, W.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Martinelli, G.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Mizunami, T.

Morinaga, K.

Mukherjee, N.

Myers, R. A.

Narazaki, A.

A. Narazaki, K. Tanaka, and K. Hirao, "Surface structure and second-order nonlinear optical properties of thermally poled WO3-TeO2 glasses doped with Na," J. Opt. Soc. Am. B 19, 54-62 (2002).
[CrossRef]

Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002).
[CrossRef]

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

Niu, H.

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

Orriols, G.

Ozcan, A.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films," J. Appl. Phys. 94, 013502 (2005).
[CrossRef]

Panizza, P.

C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005).
[CrossRef]

Pi, F.

Pruneri, V.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
[CrossRef]

Qiu, M.

Quiquempois, Y.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Rouch, J.

C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005).
[CrossRef]

Russell, P. St. J.

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, "Effect of poling conditions on second-harmonic generation in fused silica," Opt. Lett. 21, 468-470 (1996).
[CrossRef] [PubMed]

P.G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Sakaguchi, K.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

Samoggia, F.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
[CrossRef]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

Shih, C. T.

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

Si, J.

Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002).
[CrossRef]

Stolen, R. H.

Sue, J. S.

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

H. Y. Chen, J. S. Sue, Y. H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
[CrossRef] [PubMed]

Takebe, H.

Tanaka, K.

A. Narazaki, K. Tanaka, and K. Hirao, "Surface structure and second-order nonlinear optical properties of thermally poled WO3-TeO2 glasses doped with Na," J. Opt. Soc. Am. B 19, 54-62 (2002).
[CrossRef]

Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

Tom, H. K.

Tsai, C. S.

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

Ushiki, H.

C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005).
[CrossRef]

Vilaseca, R.

Watts, D. C.

G. Williams and D. C. Watts, "Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function," Trans. Faraday Soc. 66, 80-85 (1970).
[CrossRef]

Williams, G.

G. Williams and D. C. Watts, "Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function," Trans. Faraday Soc. 66, 80-85 (1970).
[CrossRef]

Wong, D.

Wu, P. T.

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

Xu, W.

Yang, G. M.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
[CrossRef]

Yang, Y. H.

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

Yonesaki, Y.

Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002).
[CrossRef]

Zeghlache, H.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Ann. Phys. Chem.

R. Kohlrausch, "Ueber das Dellmann'sche elektrometer," Ann. Phys. Chem. 72, 353-405 (1847).
[CrossRef]

Appl. Phys. Lett.

O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004).
[CrossRef]

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999).
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

J. Appl. Phys.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films," J. Appl. Phys. 94, 013502 (2005).
[CrossRef]

H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. D

Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002).
[CrossRef]

J. Phys.: Condens. Matter

C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005).
[CrossRef]

Opt. Commun.

P.G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

Trans. Faraday Soc.

G. Williams and D. C. Watts, "Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function," Trans. Faraday Soc. 66, 80-85 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Maker fringe curves of (a) GE124 and (b) KV glasses poled under vacuum (open circles) and in air (solid circles), respectively. The data were taken right after poling.

Fig. 2.
Fig. 2.

SH signal as a function of storage time for (a) vacuum-poled and (b) air-poled GE124 glasses stored in dry and wet environments.

Fig. 3.
Fig. 3.

SH signal versus storage time for (a) vacuum-poled and (b) air-poled KV glasses stored in dry and wet conditions. Dependence of SH signal on storage time for vacuum-poled and airpoled KV glasses stored in (c) dry and (d) wet conditions are also shown. Solid and dash-dot curves were fitted curves by a stretched exponential function.

Tables (2)

Tables Icon

Table I. Trace element composition of GE124 and KV glasses measured by ICP-MS. Structural OH impurities were measured by IR absorption spectroscopy.

Tables Icon

Table II. Relaxation time τ and stretching parameter β obtained by fitting the stretched exponential function to the decay of SON in air-poled and vacuum-poled KV glasses at various humidity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I o e ( t τ ) β ,
χ ( 2 ) = 3 χ ( 3 ) E dc ,

Metrics