Abstract

Nonlinear loss is the central problem in silicon devices that operate using nonlinear optical effects. Wavelength converters are one example of such devices, wherein high optical intensities required for nonlinear interactions cause two-photon absorption and severe free-carrier absorption. In this paper, we report the first demonstration of nonlinear photovoltaic effect in silicon wavelength converters. This useful phenomenon allows us to eliminate the nonlinear loss caused by free-carrier absorption, while harvesting the optical power that is normally consumed by two-photon absorption.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, Optical interconnects: the Silicon approach (Springer, 2006).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, (Chichester, U.K., Wiley 2004).
    [CrossRef]
  3. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
    [CrossRef] [PubMed]
  4. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
    [CrossRef]
  5. H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
    [CrossRef] [PubMed]
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
    [CrossRef] [PubMed]
  7. T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  8. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004).
    [CrossRef] [PubMed]
  9. R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
    [CrossRef] [PubMed]
  10. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  11. S. Fathpour, O. Boyraz, D. Dimitropoulos, and B. Jalali, "Demonstration of CW Raman gain with zero electrical power dissipation in p-i-n silicon waveguides," in Proceedings of IEEE Conf. on Lasers and Electro-optics, CLEO 2006, Long Beach, CA, May 2006, paper CMK3.
  12. International Technology Roadmap for Semiconductors, 2005 Edition, http://www.itrs.net/.
  13. D. J. Frank, "Scaling CMOS to the Limits," IBM J. Research and Development 46, 235-244 (2002).Q1
    [CrossRef]
  14. S. Fathpour, K. K. Tsia, and B. Jalali, presented at Optical Amplifiers and Their Applications Topical Meeting (OAA), Whistler, B.C., Canada, June 2006, paper PD1.
  15. S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers", Appl. Phys. Lett. 89, 061109 (2006).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 3rd edition (Academic Press, New York, 2001).
  17. R. Claps, V. Raghunathan, O. Boyraz, P. Koonath, D. Dimitropoulos, and B. Jalali, "Raman amplification and lasing in SiGe waveguides," Opt. Express,  13. 2459-2466 (2005).
    [CrossRef] [PubMed]
  18. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
    [CrossRef] [PubMed]
  19. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
    [CrossRef]
  20. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett.,  82, 2954-2956 (2003).
    [CrossRef]
  21. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and Nonlinear Optical Processes in Silicon Waveguides," Opt. Express 12, 149-160 (2004).
    [CrossRef] [PubMed]
  22. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
    [CrossRef]

2006 (5)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers", Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

H. Rong, Y. -H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (3)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett.,  82, 2954-2956 (2003).
[CrossRef]

2002 (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
[CrossRef]

D. J. Frank, "Scaling CMOS to the Limits," IBM J. Research and Development 46, 235-244 (2002).Q1
[CrossRef]

Agrawal, G. P.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
[CrossRef]

Boyraz, O.

Claps, R.

Cohen, O.

Dadap, J. I.

Dimitropoulos, D.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett.,  82, 2954-2956 (2003).
[CrossRef]

Espinola, R. L.

Fang, A.

Fathpour, S.

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers", Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

Fauchet, P. M.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

Frank, D. J.

D. J. Frank, "Scaling CMOS to the Limits," IBM J. Research and Development 46, 235-244 (2002).Q1
[CrossRef]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett.,  82, 2954-2956 (2003).
[CrossRef]

Hak, D.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
[CrossRef]

Hedekvist, P- O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
[CrossRef]

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

Jalali, B.

Jones, R.

Koonath, P.

Kuo, Y. -H.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
[CrossRef]

Liang, T. K.

T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

Liu, A.

McNab, S. J.

Osgood, R. M.

Paniccia, M.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett.,  82, 2954-2956 (2003).
[CrossRef]

Raghunathan, V.

Rong, H.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

Tsang, H. K.

T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

Tsia, K. K.

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers", Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

Vlasov, Y. A.

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
[CrossRef]

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

Zhang, J.

Appl. Phys. Lett. (4)

T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett.,  82, 2954-2956 (2003).
[CrossRef]

S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers", Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

IBM J. Research and Development (1)

D. J. Frank, "Scaling CMOS to the Limits," IBM J. Research and Development 46, 235-244 (2002).Q1
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P- O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.,  8, 506-520 (2002).Q2
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett.,  18, 1046-1048, (2006).
[CrossRef]

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,  441, 960-963 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

Other (6)

S. Fathpour, O. Boyraz, D. Dimitropoulos, and B. Jalali, "Demonstration of CW Raman gain with zero electrical power dissipation in p-i-n silicon waveguides," in Proceedings of IEEE Conf. on Lasers and Electro-optics, CLEO 2006, Long Beach, CA, May 2006, paper CMK3.

International Technology Roadmap for Semiconductors, 2005 Edition, http://www.itrs.net/.

L. Pavesi and G. Guillot, Optical interconnects: the Silicon approach (Springer, 2006).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, (Chichester, U.K., Wiley 2004).
[CrossRef]

S. Fathpour, K. K. Tsia, and B. Jalali, presented at Optical Amplifiers and Their Applications Topical Meeting (OAA), Whistler, B.C., Canada, June 2006, paper PD1.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd edition (Academic Press, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for wavelength conversion measurement in SOI waveguides (EDFA: Erbium-doped fiber amplifier; BPF: band pass filter; PC: polarization controller; OSA: optical spectrum analyzer). The right bottom inset shows the rib waveguide cross-section with width of W=1.5 µm, rib height of H=2 µm, etch-depth of h=0.9µm and d=1.9 µm.

Fig. 2.
Fig. 2.

Output spectrum resulted from four-wave mixing in the waveguide under forward-bias of Vbias =+0.5V at coupled pump power of 0.71W. The converted signal is at 1544.25 nm with a conversion efficiency ~-23.8dB.

Fig. 3.
Fig. 3.

Wavelength conversion efficiency as a function of coupled pump power under different biasing conditions. The wavelength detuning, Δλ=λ2 -λ1 , is 1 nm. The dashed lines represent the modeled conversion efficiency for different measured carrier lifetime values at different biasing conditions. (b) Wavelength conversion efficiency as a function of the wavelength detuning Δλ at different biasing conditions, measured at pump power of 0.71 W.

Fig. 4.
Fig. 4.

Temporal response of a CW signal laser to a pulsed pump laser at different biasing condition in the p-i-n SOI waveguide. The fitted carrier lifetime values are shown in the legend.

Fig. 5.
Fig. 5.

(a) I-V characteristics of the p-i-n diode straddled the SOI rib waveguide at various coupled pump powers measured by a curve-tracer. (b) Generated electrical power from the diode as a function of forward bias at Δλ=1 nm and coupled pump power of 0.71W. The inset shows the generated electrical power in wider range of bias voltages, from -15V to +0.9 V.

Fig. 6.
Fig. 6.

(a) Conversion efficiency versus optical intensity for a large waveguide (W=1.5 µm, H=2 µm, h=0.9 µm, d=1.9 µm) and a sub-micron waveguide (W=0.45 µm, H=0.35 µm, h=0.3µm, d=0.3 µm). The dashed and solid curves represent -15 V and +0.5 V biases, respectively. The experimental data at -15 V (circles) and +0.5V (squares) are overlaid (same as in Fig. 3). Δλ=1 nm and 15 nm for large and sub-micron waveguide, respectively; (b) Calculated conversion spectra of the small waveguide at optical intensity of ~300 MW/cm2 at -15 V (dashed line) and +0.5 V (solid line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d A p d z = 1 2 [ α + α p FCA ( z ) ] A p + i ( γ p + i β 2 ) A p 2 A p ,
d A s d z = 1 2 [ α + α s FCA ( z ) ] A s + 2 i ( γ s + i β 2 ) A p 2 A s + i γ s A p 2 A i * exp ( i Δ k · z ) ,
d A i * d z = 1 2 [ α + α i FCA ( z ) ] A i * 2 i ( γ i i β 2 ) A p 2 A i * i γ i A p * 2 A s exp ( i Δ k · z ) ,

Metrics