Abstract

The Generalized Phase Contrast (GPC) method of optical 3D manipulation has previously been used for controlled spatial manipulation of live biological specimen in real-time. These biological experiments were carried out over a time-span of several hours while an operator intermittently optimized the optical system. Here we present GPC-based optical micromanipulation in a microfluidic system where trapping experiments are computer-automated and thereby capable of running with only limited supervision. The system is able to dynamically detect living yeast cells using a computer-interfaced CCD camera, and respond to this by instantly creating traps at positions of the spotted cells streaming at flow velocities that would be difficult for a human operator to handle. With the added ability to control flow rates, experiments were also carried out to confirm the theoretically predicted axially dependent lateral stiffness of GPC-based optical traps.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11,288-290 (1986).
    [CrossRef] [PubMed]
  2. K. Sasaki, M. Koshio, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern formation and flow control of fine particles by laser-scanning micromanipulation," Opt. Lett. 16, 1463-1465 (1991).
    [CrossRef] [PubMed]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  4. K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
    [CrossRef]
  5. J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
    [CrossRef] [PubMed]
  6. A. Terray, J. Oakey, and D. W. M. Marr, "Microfluidic control using colloidal devices," Science 296, 1841 (2002).
    [CrossRef] [PubMed]
  7. L. Kelemen, S. Valkai, and P. Ormos, "Integrated optical motor," Appl. Opt. 45, 2777-2780 (2006).
    [CrossRef] [PubMed]
  8. J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
    [CrossRef] [PubMed]
  9. J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268-282 (2001).
    [CrossRef]
  10. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
    [CrossRef]
  11. N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
    [CrossRef] [PubMed]
  12. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
    [CrossRef] [PubMed]
  13. I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18, 2852-2857 (2005).
    [CrossRef]
  14. P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, "Three-dimensional forces in GPC-based counterpropagating-beam traps," Opt. Express 14, 5812-5822 (2006).
    [CrossRef] [PubMed]

2006 (3)

2005 (4)

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
[CrossRef] [PubMed]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18, 2852-2857 (2005).
[CrossRef]

2004 (2)

J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
[CrossRef] [PubMed]

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

2003 (1)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Terray, J. Oakey, and D. W. M. Marr, "Microfluidic control using colloidal devices," Science 296, 1841 (2002).
[CrossRef] [PubMed]

2001 (1)

1991 (1)

1986 (1)

Andersen, G. H.

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

Arneborg, N.

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

Ashkin, A.

Bjorkholm, J. E.

Bøggild, P.

Chu, S.

Daria, V. R.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
[CrossRef]

Dziedzic, J. M.

Enger, J.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Gammelgaard, L.

Glückstad, J.

P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, "Three-dimensional forces in GPC-based counterpropagating-beam traps," Opt. Express 14, 5812-5822 (2006).
[CrossRef] [PubMed]

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
[CrossRef] [PubMed]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18, 2852-2857 (2005).
[CrossRef]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
[CrossRef] [PubMed]

J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268-282 (2001).
[CrossRef]

Goksör, M.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Hagberg, P.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Hanstorp, D.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Kelemen, L.

Kitamura, N.

Koshio, M.

Marr, D. W. M.

A. Terray, J. Oakey, and D. W. M. Marr, "Microfluidic control using colloidal devices," Science 296, 1841 (2002).
[CrossRef] [PubMed]

Masuhara, H.

Misawa, H.

Mogensen, P. C.

Nissen, P.

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

Oakey, J.

A. Terray, J. Oakey, and D. W. M. Marr, "Microfluidic control using colloidal devices," Science 296, 1841 (2002).
[CrossRef] [PubMed]

Ormos, P.

Perch-Nielsen, I. R.

Ramser, K.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Reece, P.

K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
[CrossRef]

Rodrigo, P. J.

P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, "Three-dimensional forces in GPC-based counterpropagating-beam traps," Opt. Express 14, 5812-5822 (2006).
[CrossRef] [PubMed]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, "Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes," Opt. Express 18, 2852-2857 (2005).
[CrossRef]

P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
[CrossRef] [PubMed]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

Sasaki, K.

Siegumfeldt, H.

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

Terray, A.

A. Terray, J. Oakey, and D. W. M. Marr, "Microfluidic control using colloidal devices," Science 296, 1841 (2002).
[CrossRef] [PubMed]

Valkai, S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

FEMS Microbiol. Lett. (1)

N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005).
[CrossRef] [PubMed]

Lab Chip (1)

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Nano Today (1)

K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006).
[CrossRef]

Nat. Mater. (1)

J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
[CrossRef] [PubMed]

Nature (1)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

A. Terray, J. Oakey, and D. W. M. Marr, "Microfluidic control using colloidal devices," Science 296, 1841 (2002).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (2568 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. The long working distance between the objective lenses significantly eases the insertion of a microfluidic system. The computer undertakes multiple tasks such as receiving feedback from an observation module, processing the acquired data and lastly generating control signals used for addressing the spatial light modulation module.

Fig. 2.
Fig. 2.

An image of one of the microfluidic systems and the schematic of the component needles and microscope cover slips.

Fig. 3.
Fig. 3.

Left: Illustrating the particle dynamics in a lift and escape experiment. Forward movement is temporarily stopped while the optical trap lifts the particle. Right: Sequence of images showing yeast cells in a flow, 200 ms between successive frames. The yellow line represents the position of the trapped cell, which exits the trap between frame 3 and 4, the dark blue line indicates a free flowing cell. The exit velocity of the optically lifted yeast cell is greater than 60 µm/s, approximately 6 times that of a free flowing cell.

Fig. 4.
Fig. 4.

Mean values of escape velocities of 6 µm polystyrene beads as a function of pump rate. Particle size 5.68 µm. 50–100 data points per pump rate. Error bars are the std. deviation; the main contribution is pulsation of the syringe pump. Microbead escape velocity is significantly larger than measured for the yeast cells, due to the smaller size and higher refractive index of the polystyrene beads compared to that of the cell.

Fig. 5.
Fig. 5.

Realtime interactive manipulation of yeast cells in a microfluidic system (0.75 s between frames). Free moving cells are out of focus and creeping from left to right along the lower surface at ~10 µm/s. Five yeast cells are trapped (rightmost trap contains two cells). The yeast cells that are lifted into focus enter a region with flow velocity exceeding 50 µm/s (estimated by turning off traps). Frames 1–3: the lower cell is lifted. Frames 4–10: the upper and lower cells are repositioned by the user via computer mouse control.

Fig. 6.
Fig. 6.

(AVI: 2.5 MB) Detection and trapping of cells (0.75 s between successive frames). The square marks the detection/trapping area. When the square is off, the cells are released. The flow is set to 20 µl/hour, giving a cell velocity of approximately 15 µm/s. Note the two cells top-left in the detection area of frame 3; they are close together and both relatively small and therefore detected as one cell, resulting in the creation of a single common trap.

Metrics