Abstract

We report on sizable optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser, as a result of the resonant reabsorption losses in the laser crystal which increase with the temperature. Significant intensity fluctuations have been observed in a small operational region near the critical point.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 13.7.
  2. R. W. Boyd, Nonlinear Optics (Academic Press, Inc., San Diego, Calif., 1992), Chap. 6.3.
  3. D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, "The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices," J. Phys. Chem. B 104, 11045-11057 (2000).
    [CrossRef]
  4. Ph. Goldner, O. Guillot-Noël, and P. Higel, "Optical bistability in Yb3+:YCa4O(BO3)3 crystal," Opt. Mater. 26, 281-286 (2004).
    [CrossRef]
  5. S. Ruschin and S. H. Bauer, "Bistability, hysteresis and critical behavior of a CO2 laser, with SF6 intracavity as a saturable absorber," Chem. Phys. Lett. 66, 100-103 (1979).
    [CrossRef]
  6. T. G. Dziura, "Beyond mean field and plane wave theories of bistable semiconductor lasers," IEEE J. Quantum Electron. 22, 651-654 (1986).
    [CrossRef]
  7. X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
    [CrossRef]
  8. J. M. Oh and D. Lee, "Strong optical bistability in a simple L-band tunable erbium-doped fiber ring laser," IEEE J. Quantum Electron.,  40, 374-377 (2004).
    [CrossRef]
  9. S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules," Appl. Phys. Lett . 87, 181102-1-3 (2005).
    [CrossRef]
  10. J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, "Continuous-wave laser operation of Yb:LuVO4," Opt. Lett. 30, 3162-3164 (2005).
    [CrossRef] [PubMed]
  11. L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski, "Semiclassical and quantum theories of bistability in lasers containing saturable absorbers," Phys. Rev. A 18, 238-254 (1978).
    [CrossRef]

2005 (1)

2004 (2)

J. M. Oh and D. Lee, "Strong optical bistability in a simple L-band tunable erbium-doped fiber ring laser," IEEE J. Quantum Electron.,  40, 374-377 (2004).
[CrossRef]

Ph. Goldner, O. Guillot-Noël, and P. Higel, "Optical bistability in Yb3+:YCa4O(BO3)3 crystal," Opt. Mater. 26, 281-286 (2004).
[CrossRef]

2001 (1)

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

2000 (1)

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, "The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices," J. Phys. Chem. B 104, 11045-11057 (2000).
[CrossRef]

1986 (1)

T. G. Dziura, "Beyond mean field and plane wave theories of bistable semiconductor lasers," IEEE J. Quantum Electron. 22, 651-654 (1986).
[CrossRef]

1979 (1)

S. Ruschin and S. H. Bauer, "Bistability, hysteresis and critical behavior of a CO2 laser, with SF6 intracavity as a saturable absorber," Chem. Phys. Lett. 66, 100-103 (1979).
[CrossRef]

1978 (1)

L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski, "Semiclassical and quantum theories of bistability in lasers containing saturable absorbers," Phys. Rev. A 18, 238-254 (1978).
[CrossRef]

Bauer, S. H.

S. Ruschin and S. H. Bauer, "Bistability, hysteresis and critical behavior of a CO2 laser, with SF6 intracavity as a saturable absorber," Chem. Phys. Lett. 66, 100-103 (1979).
[CrossRef]

Cheng, J.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Dembinski, S. T.

L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski, "Semiclassical and quantum theories of bistability in lasers containing saturable absorbers," Phys. Rev. A 18, 238-254 (1978).
[CrossRef]

Dziura, T. G.

T. G. Dziura, "Beyond mean field and plane wave theories of bistable semiconductor lasers," IEEE J. Quantum Electron. 22, 651-654 (1986).
[CrossRef]

Gamelin, D. R.

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, "The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices," J. Phys. Chem. B 104, 11045-11057 (2000).
[CrossRef]

Goldner, Ph.

Ph. Goldner, O. Guillot-Noël, and P. Higel, "Optical bistability in Yb3+:YCa4O(BO3)3 crystal," Opt. Mater. 26, 281-286 (2004).
[CrossRef]

Griebner, U.

Güdel, H. U.

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, "The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices," J. Phys. Chem. B 104, 11045-11057 (2000).
[CrossRef]

Guillot-Noël, O.

Ph. Goldner, O. Guillot-Noël, and P. Higel, "Optical bistability in Yb3+:YCa4O(BO3)3 crystal," Opt. Mater. 26, 281-286 (2004).
[CrossRef]

Higel, P.

Ph. Goldner, O. Guillot-Noël, and P. Higel, "Optical bistability in Yb3+:YCa4O(BO3)3 crystal," Opt. Mater. 26, 281-286 (2004).
[CrossRef]

Huang, X.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Jiang, M.

Kossakowski, A.

L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski, "Semiclassical and quantum theories of bistability in lasers containing saturable absorbers," Phys. Rev. A 18, 238-254 (1978).
[CrossRef]

Lee, D.

J. M. Oh and D. Lee, "Strong optical bistability in a simple L-band tunable erbium-doped fiber ring laser," IEEE J. Quantum Electron.,  40, 374-377 (2004).
[CrossRef]

Lester, L. F.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Li, H.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Liu, G. T.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Liu, J.

Lugiato, L. A.

L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski, "Semiclassical and quantum theories of bistability in lasers containing saturable absorbers," Phys. Rev. A 18, 238-254 (1978).
[CrossRef]

Lüthi, S. R.

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, "The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices," J. Phys. Chem. B 104, 11045-11057 (2000).
[CrossRef]

Malloy, K. J.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Mandel, P.

L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski, "Semiclassical and quantum theories of bistability in lasers containing saturable absorbers," Phys. Rev. A 18, 238-254 (1978).
[CrossRef]

Mateos, X.

Oh, J. M.

J. M. Oh and D. Lee, "Strong optical bistability in a simple L-band tunable erbium-doped fiber ring laser," IEEE J. Quantum Electron.,  40, 374-377 (2004).
[CrossRef]

Petrov, V.

Rice, A.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Ruschin, S.

S. Ruschin and S. H. Bauer, "Bistability, hysteresis and critical behavior of a CO2 laser, with SF6 intracavity as a saturable absorber," Chem. Phys. Lett. 66, 100-103 (1979).
[CrossRef]

Stintz, A.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Wang, J.

Zhang, H.

Chem. Phys. Lett. (1)

S. Ruschin and S. H. Bauer, "Bistability, hysteresis and critical behavior of a CO2 laser, with SF6 intracavity as a saturable absorber," Chem. Phys. Lett. 66, 100-103 (1979).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. G. Dziura, "Beyond mean field and plane wave theories of bistable semiconductor lasers," IEEE J. Quantum Electron. 22, 651-654 (1986).
[CrossRef]

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

J. M. Oh and D. Lee, "Strong optical bistability in a simple L-band tunable erbium-doped fiber ring laser," IEEE J. Quantum Electron.,  40, 374-377 (2004).
[CrossRef]

J. Phys. Chem. B (1)

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, "The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices," J. Phys. Chem. B 104, 11045-11057 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

Ph. Goldner, O. Guillot-Noël, and P. Higel, "Optical bistability in Yb3+:YCa4O(BO3)3 crystal," Opt. Mater. 26, 281-286 (2004).
[CrossRef]

Phys. Rev. A (1)

L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski, "Semiclassical and quantum theories of bistability in lasers containing saturable absorbers," Phys. Rev. A 18, 238-254 (1978).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 13.7.

R. W. Boyd, Nonlinear Optics (Academic Press, Inc., San Diego, Calif., 1992), Chap. 6.3.

S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules," Appl. Phys. Lett . 87, 181102-1-3 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Dependence of the output power of the Yb:LuVO4 laser on the absorbed pump power, showing a sizable hysteresis loop.

Fig. 2.
Fig. 2.

Oscilloscope traces of the laser output showing the intensity fluctuations near the upthreshold. The traces from (a) to (e) were recorded when the pump power was decreased through the up-threshold point. The horizontal time scale is 0.1 ms/div.

Tables (1)

Tables Icon

Table 1. Absorbed pump power at threshold for different Yb-doped crystals (for vanadates, Pth P th, up )*

Metrics