Abstract

Intracavity-pumped Raman laser action in a fiber-laser–pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3," Opt. Lett. 21, 713−715 (1996).
    [CrossRef] [PubMed]
  2. P. Gross, M. E. Klein, T. Walde, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, "Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator," Opt. Lett. 27, 418−420 (2002).
    [CrossRef]
  3. G. McConnell and A. I. Ferguson, "Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate," Opt. Express 13, 2099−2104 (2005).
    [CrossRef] [PubMed]
  4. K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528−4534 (2002).
    [CrossRef]
  5. D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
    [CrossRef]

2005 (2)

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

G. McConnell and A. I. Ferguson, "Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate," Opt. Express 13, 2099−2104 (2005).
[CrossRef] [PubMed]

2002 (2)

K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528−4534 (2002).
[CrossRef]

P. Gross, M. E. Klein, T. Walde, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, "Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator," Opt. Lett. 27, 418−420 (2002).
[CrossRef]

1996 (1)

Alexander, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

Alexander, J. I.

Auerbach, M.

Boller, K.-J.

Bosenberg, W. R.

Byer, R. L.

Deshpande, D. C.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

Doerr, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

Drobshoff, A.

Fallnich, C.

Fejer, M. M.

K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528−4534 (2002).
[CrossRef]

Ferguson, A. I.

Gross, P.

Hirt, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

Klein, M. E.

Kurz, J.

K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528−4534 (2002).
[CrossRef]

Malshe, A. P.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

McConnell, G.

Myers, L. E.

Nakamura, K.

K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528−4534 (2002).
[CrossRef]

Parameswaran, K.

K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528−4534 (2002).
[CrossRef]

Radmilovich, V.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

Stach, E. A.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovich, D. Alexander, D. Doerr, and D. Hirt, "Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate," J. Appl. Phys. 97, 074316 (2005).
[CrossRef]

Walde, T.

Wessels, P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Continuous-wave, mid-IR MgO:PPLN SRO block diagram.

Fig. 2.
Fig. 2.

Difference in resonator mirror reflectivity of ~1% in 99% vicinity corresponds to 10× difference in intracavity power.

Fig. 3.
Fig. 3.

Simultaneous optical parametric oscillator and Raman laser action occurs when intracavity signal power achieves tens of watts due to a high mirror-reflection coefficient for the signal (mirror set #2). Spectra shown in the inset have been taken at the maximum pump power of 8 W. Grating #2, with a 31-µm grating period, has been used in both cases with a measured signal wavelength of 1593 nm. The Raman laser threshold occurs at ~1.9 W of SRO pump power.

Fig. 4.
Fig. 4.

Idler beam profile taken with mid-IR Pyrocam III camera (Spiricon, Inc., Logan, UT) corresponds to TEM00 mode.

Fig. 5.
Fig. 5.

Analysis of signal spectra for six different PPLN gratings shows eight Raman components for MgO-doped PPLN. Not all of the components are generated in each grating. The Raman component content for each grating is defined by different losses of Raman laser resonator at different wavelengths.

Fig. 6.
Fig. 6.

Mid-IR SRO output (idler) power instability improves significantly in the case of simultaneous SRO and Raman laser operation (b) due to stabilizing limiter action of the Raman laser.

Metrics