Abstract

Stimulated Brillouin scattering was investigated for the first time in As2S3 single-mode fibers, and also in As2Se3. The propagation loss and numerical aperture of the fibers at 1.56 µm, along with the threshold intensity for the stimulated Brillouin scattering process were measured. From the threshold values we estimate the Brillouin gain coefficient and demonstrate record figure of merit for slow-light based applications in chalcogenide fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  2. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  3. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  4. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef]
  5. <jrn>. C. Jáuregui, H. Ono, P. Petropoulos, and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber," OFC, paper PDP2 (2006).</jrn>
  6. K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006).
    [CrossRef] [PubMed]
  7. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2006).
    [CrossRef]
  8. K. Ogusu, "Analysis of steady-state cascaded stimulated Brillouin scattering in a Fiber Fabry-Pérot Resonator," IEEE Photon. Technol. Lett. 14, 947-949 (2002).
    [CrossRef]
  9. see, for example, A. B. Ruffin, M-J Li, X. Chen, A. Kobyakov, and F. Annunziata, "Brillouin gain analysis for fibers with different refractive indices," Opt. Lett. 30, 3123-3125 (2005) and references [3], [8] within.
    [CrossRef] [PubMed]
  10. A. B. Ruffin, "Stimulated Brillouin Scattering: An overview of measurements, system impairments, and applications," NIST Symposium on Optical Fiber Measurements, Technical Digest, 23-28 (2004).
  11. E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972).
    [CrossRef]
  12. K. Ogusu, H. Li, and M. Kitao, "Brillouin-gain coefficients of chalcogenide glasses," J. Opt. Soc. Am. B 21, 1302-1304 (2004).
    [CrossRef]
  13. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers," Opt. Lett. 30, 1698-1700 (2005).
    [CrossRef] [PubMed]

2006 (2)

2005 (5)

2004 (1)

2002 (1)

K. Ogusu, "Analysis of steady-state cascaded stimulated Brillouin scattering in a Fiber Fabry-Pérot Resonator," IEEE Photon. Technol. Lett. 14, 947-949 (2002).
[CrossRef]

1972 (1)

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972).
[CrossRef]

Abedin, K. S.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Dahan, D.

Eisenstein, G.

Gaeta, A. L.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Hasegawa, T.

Herráez, M. G.

Hotate, K.

Ippen, E. P.

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972).
[CrossRef]

Kikuchi, K.

Kitao, M.

Lee, J. H.

Li, H.

Nagashima, T.

Ogusu, K.

K. Ogusu, H. Li, and M. Kitao, "Brillouin-gain coefficients of chalcogenide glasses," J. Opt. Soc. Am. B 21, 1302-1304 (2004).
[CrossRef]

K. Ogusu, "Analysis of steady-state cascaded stimulated Brillouin scattering in a Fiber Fabry-Pérot Resonator," IEEE Photon. Technol. Lett. 14, 947-949 (2002).
[CrossRef]

Ohara, S.

Okawachi, Y.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Stolen, R. H.

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972).
[CrossRef]

Sugimoto, N.

Tanemura, T.

Thévenaz, L.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Ogusu, "Analysis of steady-state cascaded stimulated Brillouin scattering in a Fiber Fabry-Pérot Resonator," IEEE Photon. Technol. Lett. 14, 947-949 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-Optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Other (3)

<jrn>. C. Jáuregui, H. Ono, P. Petropoulos, and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber," OFC, paper PDP2 (2006).</jrn>

see, for example, A. B. Ruffin, M-J Li, X. Chen, A. Kobyakov, and F. Annunziata, "Brillouin gain analysis for fibers with different refractive indices," Opt. Lett. 30, 3123-3125 (2005) and references [3], [8] within.
[CrossRef] [PubMed]

A. B. Ruffin, "Stimulated Brillouin Scattering: An overview of measurements, system impairments, and applications," NIST Symposium on Optical Fiber Measurements, Technical Digest, 23-28 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Far-field pattern data (squares) along with the Gaussian fit (line) used for the NA determination at 1.56 µm. The 5% cut-off points are used for NA determination. (a) - As2S3, (b) - As2Se3.

Fig. 2.
Fig. 2.

Cutback data used for the loss measurement at 1.56 µm on the for As2S3 fiber.

Fig. 3.
Fig. 3.

Experimental setup used for SBS threshold measurements.

Fig. 4.
Fig. 4.

Typical spectra of the reflected light sampled by the circulator for different launched pump powers into the As2S3 fiber core. Fiber length was 10.0 m. Estimated SBS threshold: (27±3) mW. All plots have the same horizontal and vertical scales but tick labels are shown only on bottom and left for clarity.

Fig. 5.
Fig. 5.

Typical spectra of the reflected light sampled by the circulator for different launched pump powers into the As2Se3 fiber core. Fiber length was 5.0 m. Estimated SBS threshold: (127±7) mW. All plots have the same horizontal and vertical scales but tick labels are shown only on bottom and left for clarity.

Tables (2)

Tables Icon

Table 1. Chalcogenide Fibers Parameters (wavelength of interest: 1.56 µm).

Tables Icon

Table 2. Comparison of figure of merit for slow-light based applications at 1.56 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V = π d λ NA
d 1 e 2 = d × ( 0.65 + 1.619 V 1.5 + 2.879 V 6 )
P th 21 A eff L eff g B k
A eff = π d 1 e 2 2 4
L eff = 1 α ( 1 e α L )
Gain [ dB ] = 10 × log ( exp ( g B k P p A eff L eff ) )
G th [ dB ] = 4.34 g B k × 1 mW × L eff L = 1 m A eff
FOM Gain [ dB ] P p nL = 4.34 g B k L eff nA eff L

Metrics