Abstract

Structural birefringent properties of a hollow-core photonic-bandgap fiber were carefully investigated and applied to all-fiber chirpedpulse amplification as a compressor. The group birefringence of as high as 6.9×10-4 and the dispersion splitting by as large as 149 ps/nm/km between the two principal polarization modes were observed at 1557 nm. By launching the amplifier output to one of the polarization modes a 17-dB polarization extinction ratio was obtained without any pulse degradation originating from polarization-mode dispersion. A hybrid fiber stretcher effectively compensates the peculiar dispersion of the photonic-bandgap fiber and pedestal-free 440-fs pulses with a 1-W average power and 21-nJ pulse energy were obtained. Polarization-maintaining fiber-pigtail output of high-power femtosecond pulses is useful for various applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30, 2754-2756 (2005).
    [CrossRef] [PubMed]
  2. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
    [CrossRef] [PubMed]
  3. K. -H. Liao, K. -C. Hou, G. Chang, V. Smirnov, L. Glebov, R. Changkakoti, P. Mamidipudi, and A. Galvanauskas, "Diffraction-limited 65-µm core Yb-doped LMA fiber based high energy fiber CPA systems," in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America, 2006), paper CPDB4.
  4. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
    [CrossRef] [PubMed]
  5. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, "All-fiber chirped pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003).
    [CrossRef] [PubMed]
  6. G. Imeshev, I. Hartl, and M. E. Fermann, "An optimized Er gain band all-fiber chirped pulse amplification system," Opt. Express 12, 6508-6514 (2004).
    [CrossRef] [PubMed]
  7. L. Fu, I. C. Littler, and B. J. Eggleton, "Matched photonic bandgap fiber and fiber Bragg grating dispersion for a totally in-fiber stretch pulse amplification system," in Conference on Lasers, Technical Digest (CD) (Optical Society of America, 2005), paper CMM4.
  8. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  9. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Nonlinear properties of hollow-core photonic band-gap fibers," in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMM3.
  10. K. Saitoh and M. Koshiba,"Photonic bandgap fibers with high birefringence," IEEE Photon. Tech. Lett. 14, 1291-1293 (2002).
    [CrossRef]
  11. G. Bouwmans, F. Luan, J. Knight, P. St. J. Russell, L. Farr, B. Mangan, and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003).
    [CrossRef] [PubMed]
  12. X. Chen, M. -J. Li, N. Venkataraman, M. Gallagher, W. Wood, A. Crowley, J. Carberry, L. Zenteno, and K. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004).
    [CrossRef] [PubMed]
  13. M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
    [CrossRef] [PubMed]
  14. M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, and J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Express 13, 1457-1467 (2005).
    [CrossRef] [PubMed]
  15. G. Statkiewicz, T. Martynkien, and W. Urbañczyk, "Measurements of birefringence and its sensitivity to hydrostatic pressure and elongation in photonic hollow core fiber with residual core ellipticity," Opt. Commun. 255, 175-183 (2005).
    [CrossRef]
  16. F. Poletti, N. G. Broderick, D. Richardson, and T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005).
    [CrossRef] [PubMed]
  17. C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurements based on transmission spectra through a polarizer," J. Lightwave Tech. 12, 917-929 (1994), and references therein.
    [CrossRef]
  18. A. Shirakawa, T. Atsumi, M. Tanisho, and K. Ueda, "Single-shot white-light interferometry for precise fiber dispersion measurement," to be submitted to IEEE Photon. Tech. Lett. (2006).
  19. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
    [CrossRef] [PubMed]
  20. P. Adel, M. Engelbrecht, D. Wandt, and C. Fallnich, "Resonant nonlinearity in high-energy Er3+-fiber chirped-pulse-amplifiers," Opt. Express 13, 10260-10265 (2005).
    [CrossRef] [PubMed]
  21. E. Desurvire, "Study of the complex atomic susceptibility of erbium-doped fiber amplifiers," J. Lightwave. Tech. 8, 1517-1527 (1990).
    [CrossRef]
  22. M. B. Hoffmann and J. A. Buck, "Erbium resonance-based dispersion effects on subpicosecond pulse propagation in fiber amplifiers: analytical studies," J. Opt. Soc. Am. B 13, 2012-2016 (1996).
    [CrossRef]
  23. A. Dabirian, M. Akbari, and N. Mortensen, "The radiated fields of the fundamental mode of photonic crystal fibers," Opt. Express 13, 3999-4004 (2005).
    [CrossRef] [PubMed]
  24. A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).
  25. P. K. Cheo and G. G. King, "Clad-pumped Yb:Er codoped fiber lasers," IEEE Photon. Tech. Lett. 13, 188-190 (2001).
    [CrossRef]
  26. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
    [CrossRef]

2005 (10)

F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30, 2754-2756 (2005).
[CrossRef] [PubMed]

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
[CrossRef] [PubMed]

M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
[CrossRef] [PubMed]

M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, and J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Express 13, 1457-1467 (2005).
[CrossRef] [PubMed]

G. Statkiewicz, T. Martynkien, and W. Urbañczyk, "Measurements of birefringence and its sensitivity to hydrostatic pressure and elongation in photonic hollow core fiber with residual core ellipticity," Opt. Commun. 255, 175-183 (2005).
[CrossRef]

F. Poletti, N. G. Broderick, D. Richardson, and T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005).
[CrossRef] [PubMed]

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
[CrossRef] [PubMed]

P. Adel, M. Engelbrecht, D. Wandt, and C. Fallnich, "Resonant nonlinearity in high-energy Er3+-fiber chirped-pulse-amplifiers," Opt. Express 13, 10260-10265 (2005).
[CrossRef] [PubMed]

A. Dabirian, M. Akbari, and N. Mortensen, "The radiated fields of the fundamental mode of photonic crystal fibers," Opt. Express 13, 3999-4004 (2005).
[CrossRef] [PubMed]

A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).

2004 (2)

2003 (5)

2002 (1)

K. Saitoh and M. Koshiba,"Photonic bandgap fibers with high birefringence," IEEE Photon. Tech. Lett. 14, 1291-1293 (2002).
[CrossRef]

2001 (1)

P. K. Cheo and G. G. King, "Clad-pumped Yb:Er codoped fiber lasers," IEEE Photon. Tech. Lett. 13, 188-190 (2001).
[CrossRef]

1996 (1)

1994 (1)

C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurements based on transmission spectra through a polarizer," J. Lightwave Tech. 12, 917-929 (1994), and references therein.
[CrossRef]

1990 (1)

E. Desurvire, "Study of the complex atomic susceptibility of erbium-doped fiber amplifiers," J. Lightwave. Tech. 8, 1517-1527 (1990).
[CrossRef]

Adel, P.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Akbari, M.

Alam, M. S.

Bouwmans, G.

Broderick, N. G.

Broeng, J.

Buck, J. A.

Carberry, J.

Chen, X.

Cheo, P. K.

P. K. Cheo and G. G. King, "Clad-pumped Yb:Er codoped fiber lasers," IEEE Photon. Tech. Lett. 13, 188-190 (2001).
[CrossRef]

Cho, G.

Crowley, A.

Dabirian, A.

de Matos, C. J. S.

Desurvire, E.

E. Desurvire, "Study of the complex atomic susceptibility of erbium-doped fiber amplifiers," J. Lightwave. Tech. 8, 1517-1527 (1990).
[CrossRef]

Engelbrecht, M.

Fallnich, C.

Farr, L.

Favin, D. L.

C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurements based on transmission spectra through a polarizer," J. Lightwave Tech. 12, 917-929 (1994), and references therein.
[CrossRef]

Fermann, M.

Fermann, M. E.

Folkenberg, J. R.

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
[CrossRef] [PubMed]

A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Gallagher, M.

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Gisin, N.

Hansen, K. P.

Hansen, T.

Hansen, T. P.

Hartl, I.

Hoffmann, M. B.

Imeshev, G.

Jakobsen, C.

Jeong, Y.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

King, G. G.

P. K. Cheo and G. G. King, "Clad-pumped Yb:Er codoped fiber lasers," IEEE Photon. Tech. Lett. 13, 188-190 (2001).
[CrossRef]

Knight, J.

Koch, K.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Koshiba, M.

M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba,"Photonic bandgap fibers with high birefringence," IEEE Photon. Tech. Lett. 14, 1291-1293 (2002).
[CrossRef]

Legré, M.

Li, M. -J.

Liem, A.

Limpert, J.

Liu, Z.

Luan, F.

Mangan, B.

Martynkien, T.

G. Statkiewicz, T. Martynkien, and W. Urbañczyk, "Measurements of birefringence and its sensitivity to hydrostatic pressure and elongation in photonic hollow core fiber with residual core ellipticity," Opt. Commun. 255, 175-183 (2005).
[CrossRef]

Monro, T.

Mortensen, N.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Musha, M.

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
[CrossRef] [PubMed]

A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).

Nakagawa, K.

Nilsson, J.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

Nolte, S.

Ortac, B.

Ota, J.

A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Poletti, F.

Poole, C. D.

C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurements based on transmission spectra through a polarizer," J. Lightwave Tech. 12, 917-929 (1994), and references therein.
[CrossRef]

Richardson, D.

Richardson, D. J.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

Röser, F.

Rothhard, J.

Russell, P. St. J.

Sabert, H.

Sahu, J. K.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

Saitoh, K.

M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba,"Photonic bandgap fibers with high birefringence," IEEE Photon. Tech. Lett. 14, 1291-1293 (2002).
[CrossRef]

Schmidt, O.

Schreiber, T.

Shah, L.

Shirakawa, A.

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
[CrossRef] [PubMed]

A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Statkiewicz, G.

G. Statkiewicz, T. Martynkien, and W. Urbañczyk, "Measurements of birefringence and its sensitivity to hydrostatic pressure and elongation in photonic hollow core fiber with residual core ellipticity," Opt. Commun. 255, 175-183 (2005).
[CrossRef]

Taylor, J. R.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Tünnermann, A.

Ueda, K.

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
[CrossRef] [PubMed]

A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).

Urbañczyk, W.

G. Statkiewicz, T. Martynkien, and W. Urbañczyk, "Measurements of birefringence and its sensitivity to hydrostatic pressure and elongation in photonic hollow core fiber with residual core ellipticity," Opt. Commun. 255, 175-183 (2005).
[CrossRef]

Venkataraman, N.

X. Chen, M. -J. Li, N. Venkataraman, M. Gallagher, W. Wood, A. Crowley, J. Carberry, L. Zenteno, and K. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Wandt, D.

Wegmuller, M.

Wood, W.

Zellmer, H.

Zenteno, L.

IEEE Photon. Tech. Lett. (2)

K. Saitoh and M. Koshiba,"Photonic bandgap fibers with high birefringence," IEEE Photon. Tech. Lett. 14, 1291-1293 (2002).
[CrossRef]

P. K. Cheo and G. G. King, "Clad-pumped Yb:Er codoped fiber lasers," IEEE Photon. Tech. Lett. 13, 188-190 (2001).
[CrossRef]

J. Lightwave Tech. (1)

C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurements based on transmission spectra through a polarizer," J. Lightwave Tech. 12, 917-929 (1994), and references therein.
[CrossRef]

J. Lightwave. Tech. (1)

E. Desurvire, "Study of the complex atomic susceptibility of erbium-doped fiber amplifiers," J. Lightwave. Tech. 8, 1517-1527 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbañczyk, "Measurements of birefringence and its sensitivity to hydrostatic pressure and elongation in photonic hollow core fiber with residual core ellipticity," Opt. Commun. 255, 175-183 (2005).
[CrossRef]

Opt. Express (11)

F. Poletti, N. G. Broderick, D. Richardson, and T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005).
[CrossRef] [PubMed]

M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, and J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Express 13, 1457-1467 (2005).
[CrossRef] [PubMed]

G. Bouwmans, F. Luan, J. Knight, P. St. J. Russell, L. Farr, B. Mangan, and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003).
[CrossRef] [PubMed]

X. Chen, M. -J. Li, N. Venkataraman, M. Gallagher, W. Wood, A. Crowley, J. Carberry, L. Zenteno, and K. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004).
[CrossRef] [PubMed]

C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, "All-fiber chirped pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003).
[CrossRef] [PubMed]

G. Imeshev, I. Hartl, and M. E. Fermann, "An optimized Er gain band all-fiber chirped pulse amplification system," Opt. Express 12, 6508-6514 (2004).
[CrossRef] [PubMed]

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
[CrossRef] [PubMed]

A. Dabirian, M. Akbari, and N. Mortensen, "The radiated fields of the fundamental mode of photonic crystal fibers," Opt. Express 13, 3999-4004 (2005).
[CrossRef] [PubMed]

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express 13, 1221-1227 (2005).
[CrossRef] [PubMed]

P. Adel, M. Engelbrecht, D. Wandt, and C. Fallnich, "Resonant nonlinearity in high-energy Er3+-fiber chirped-pulse-amplifiers," Opt. Express 13, 10260-10265 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

OSA Trends in Optics and Photonics in Advanced Solid-state Photonics (1)

A. Shirakawa, J. Ota, M. Musha, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier yielding 43-kW femtosecond pulses without chirped-pulse amplification," OSA Trends in Optics and Photonics in Advanced Solid-state Photonics 13, 547-552 (2005).

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of magawatt optical solitions in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Other (4)

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Nonlinear properties of hollow-core photonic band-gap fibers," in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMM3.

K. -H. Liao, K. -C. Hou, G. Chang, V. Smirnov, L. Glebov, R. Changkakoti, P. Mamidipudi, and A. Galvanauskas, "Diffraction-limited 65-µm core Yb-doped LMA fiber based high energy fiber CPA systems," in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America, 2006), paper CPDB4.

L. Fu, I. C. Littler, and B. J. Eggleton, "Matched photonic bandgap fiber and fiber Bragg grating dispersion for a totally in-fiber stretch pulse amplification system," in Conference on Lasers, Technical Digest (CD) (Optical Society of America, 2005), paper CMM4.

A. Shirakawa, T. Atsumi, M. Tanisho, and K. Ueda, "Single-shot white-light interferometry for precise fiber dispersion measurement," to be submitted to IEEE Photon. Tech. Lett. (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

SEM image of the cross section of the HC-PBF. Arrows indicate measured principal axes.

Fig. 2.
Fig. 2.

(a) Schematic of group-birefringence measurement. (b) Polarization-beat signal in a HC-PBF (black curve) and determined group birefringence Bg =ngx -ngy (red curve).

Fig. 3.
Fig. 3.

(a) Schematic of birefringent dispersion measurement of HC-PBF. AL’s, aspheric lenses; BS’s, beam splitters; CL, cylindrical lens. (b), (c) Spectrointerferograms of the two polarization modes of the 183-mm long HC-PBF.

Fig. 4.
Fig. 4.

Polarization-dependent phase (inset) and dispersion analyzed from the spectrointerferograms.

Fig. 5.
Fig. 5.

Schematic of the all-fiber CPA system. WDM, wavelength-division multiplexing coupler.

Fig. 6.
Fig. 6.

(a) Residual TOD in the whole system and the DCF length as functions of the SMF-28 length under GDD compensation. (b) Wavelength dependences of the dispersion of component fibers and total dispersion (thick curve).

Fig. 7.
Fig. 7.

(a) Output powers of the amplified signal (filled circles) and parasitic lasing around 1030 nm (open circles) measured at the pump end of the LMA Er:Yb PCF. (b) Spectrum and (c) temporal behavior of the parasitic lasing.

Fig. 8.
Fig. 8.

Autocorrelation traces of the HC-PBF outputs for different launched polarization states.

Fig. 9.
Fig. 9.

(a) Spectra of the oscillator, preamplifier, power amplifier, and HC-PBF compressor outputs. (b) Autocorrelation trace of the compressor output. The sech2-fit (solid curve, 431 fs) and transform-limited (dashed curve, 368 fs) are also shown. The spectrum in a linear scale is shown in the inset.

Fig. 10.
Fig. 10.

Beam quality measurement of the HC-PBF output. Beam radii in horizontal (red) and vertical (blue) directions are plotted. Photographs are the near- and far-field images in saturation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( λ ) = 2 π B ( λ ) L λ ,
I out ( λ ) I ASE ( λ ) ( 1 + γ cos Δ ϕ ( λ ) ) ,
B g ( λ ) n gx n gy = B ( λ ) λ dB d λ = λ 2 2 π L d d λ Δ ϕ ,
d B g d λ = λ d 2 B d λ 2 = λ c ( d 2 n x d λ 2 d 2 n y d λ 2 ) = ( D x ( λ ) D y ( λ ) ) c ,

Metrics