Abstract

We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13µm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM–4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Farjad-Rad, C.-K. K. Yang and M. A. Horowitz, "A 0.3- mm CMOS 8-GS/s 4-PAM Serial Link Transceiver," IEEE J. Solid-State Circuits 35, 757-764, (2000).
    [CrossRef]
  2. S. Walkin and J. Conradi, "Multilevel Signaling for increasing the reach of 10Gbps Systems," J. Lightwave Technol. 17, 2235-2248 (1999).
    [CrossRef]
  3. K. Yonenage and S. Kuwano, "Dispersion tolerant optical transmission using doubinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537, (1997).
    [CrossRef]
  4. A. Adamiecki, M. Duelk, J.H. Sinsky, M. Mandich: "Scalability of Duobinary Signaling to 25Gb/s for 100 GbE Applications," IEEE 802.3ap Task Force Meeting, (November 2004). http://www.ieee802.org/3/ap/public/nov04/adamiecki_01_1104.pdf
  5. H. Wu, J. Tiemo, P. Pepeljugoski, J. Schaub,S. Gowda, J. Kask, and A. Hajimir, "Differential 4-tap and 7-tap Transverse Filters in SiGe for 10Gh/s Multimode Fiber Optic" Link equalization" 2003 IEEE Intemational Solid State Circuit Conference. pp 180-181, February 2003.
    [CrossRef]
  6. David Cunningham, "Multilevel Modulation for 10GbE:Link and Component Specification," see http://grouper.ieee.org/groups/802/3/10G_study/public/july99/cunningham_1_0799.pdf.
  7. C. Pelard, E. Gebara, A. J. Kim, M. Vrazel, E. J. Peddi, V. M. S. Hietala, Bajekal, S. E.  Ralph, and J. Laska, "Multilevel signaling and equalization over multimode fiber at 10 Gbit/s," Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003. 25th Annual Technical Digest 2003. IEEE, p.197-199, (2003)
    [CrossRef]
  8. John. E. Cunningham, David K. McElfresh, Leon D. Lopez, Dan Vacar, and Ashok V. Krishnamoorthy, "Scaling vertical-cavity surface-emitting laser reliability for petascale systems," Appl. Opt. 45, 6342-6348 (2006).
    [CrossRef] [PubMed]
  9. RichardJ. S. Bates, Daniel M. Kuchta, Kenneth P. Jackson, "Improved Multimode Fiber Link BER Calculations due to Modal Noise and Non Self-Pulsating Laser Diodes," Opt. Quantum Electron. 27,203-224 (1995).
    [CrossRef]
  10. See Sang-Hoon Lee, Yong-Sang Cho, Bon-Jo Koo, Sang-Kook Han, "Optimization of a small to-can package electrical design for SFF/SFP optical transceiver module," Microwave Opt.l Technol. Lett. 40, 239-242, (2003).
    [CrossRef]
  11. G. P. Agrawal, "Fiber Optics Communication Systems," 2nd ed., John Wiley and Sons, p. 180-182, (1997).
  12. P. Voois, N. Swenson, and T. Lindsay, "Extending the Ethernet Link Model for EDC and Modulation Format," http://grouper.ieee.org/groups/802/3/10GMMFSG/public/mar04/voois_1_0304.pdf
  13. <other>. We have not factored in the effects from the CMOS circuitry which could be the dominate source of rms jitter and thereby mask out other components that contribute to this metric.</other>
  14. Dawei Huang, "Free Space Optical Interconnect For Computing System- Design, Optimization and Implementation," PhD Thesis, University of California, San Diego, to be published Dec (2006)
  15. Vladimir Stojanovic, "Channel-Limited High-Speed Links: Modeling, Analysis And Design, PhD Thesis, Stanford University," 2004
  16. LarryA.  Coldren and Scott W. Corzine, "Diode Lasers and Photonic Integrated Circuits," pg 200, John Wiley and Sons (1995)
  17. Only small improvement in VCSEL frequency response have developed to date compared with earlier reports of a 21 GHz result dated in 1997. see K. L. Lear, M. Ochiai, V. M. Hietala, H. Q. Hou, B. E. Hammons, J. J. Banas, and J. A. Nevers, "Small and large signal modulation of 850nm oxide-confined vertical-cavity surface-emitting lasers," Advances in Vertical Cavity Surface Emitting Lasers in Trends in Optics and Photonics Series,  15, 69-74, (1997).

2006 (1)

2003 (1)

See Sang-Hoon Lee, Yong-Sang Cho, Bon-Jo Koo, Sang-Kook Han, "Optimization of a small to-can package electrical design for SFF/SFP optical transceiver module," Microwave Opt.l Technol. Lett. 40, 239-242, (2003).
[CrossRef]

2000 (1)

R. Farjad-Rad, C.-K. K. Yang and M. A. Horowitz, "A 0.3- mm CMOS 8-GS/s 4-PAM Serial Link Transceiver," IEEE J. Solid-State Circuits 35, 757-764, (2000).
[CrossRef]

1999 (1)

1997 (2)

K. Yonenage and S. Kuwano, "Dispersion tolerant optical transmission using doubinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537, (1997).
[CrossRef]

Only small improvement in VCSEL frequency response have developed to date compared with earlier reports of a 21 GHz result dated in 1997. see K. L. Lear, M. Ochiai, V. M. Hietala, H. Q. Hou, B. E. Hammons, J. J. Banas, and J. A. Nevers, "Small and large signal modulation of 850nm oxide-confined vertical-cavity surface-emitting lasers," Advances in Vertical Cavity Surface Emitting Lasers in Trends in Optics and Photonics Series,  15, 69-74, (1997).

1995 (1)

RichardJ. S. Bates, Daniel M. Kuchta, Kenneth P. Jackson, "Improved Multimode Fiber Link BER Calculations due to Modal Noise and Non Self-Pulsating Laser Diodes," Opt. Quantum Electron. 27,203-224 (1995).
[CrossRef]

Conradi, J.

Farjad-Rad, R.

R. Farjad-Rad, C.-K. K. Yang and M. A. Horowitz, "A 0.3- mm CMOS 8-GS/s 4-PAM Serial Link Transceiver," IEEE J. Solid-State Circuits 35, 757-764, (2000).
[CrossRef]

Horowitz, M. A.

R. Farjad-Rad, C.-K. K. Yang and M. A. Horowitz, "A 0.3- mm CMOS 8-GS/s 4-PAM Serial Link Transceiver," IEEE J. Solid-State Circuits 35, 757-764, (2000).
[CrossRef]

Kuwano, S.

K. Yonenage and S. Kuwano, "Dispersion tolerant optical transmission using doubinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537, (1997).
[CrossRef]

Richard,

RichardJ. S. Bates, Daniel M. Kuchta, Kenneth P. Jackson, "Improved Multimode Fiber Link BER Calculations due to Modal Noise and Non Self-Pulsating Laser Diodes," Opt. Quantum Electron. 27,203-224 (1995).
[CrossRef]

Walkin, S.

Yang, C.-K. K.

R. Farjad-Rad, C.-K. K. Yang and M. A. Horowitz, "A 0.3- mm CMOS 8-GS/s 4-PAM Serial Link Transceiver," IEEE J. Solid-State Circuits 35, 757-764, (2000).
[CrossRef]

Yonenage, K.

K. Yonenage and S. Kuwano, "Dispersion tolerant optical transmission using doubinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537, (1997).
[CrossRef]

Advances in Vertical Cavity Surface Emitting Lasers in Trends in Optics and Photonics Series (1)

Only small improvement in VCSEL frequency response have developed to date compared with earlier reports of a 21 GHz result dated in 1997. see K. L. Lear, M. Ochiai, V. M. Hietala, H. Q. Hou, B. E. Hammons, J. J. Banas, and J. A. Nevers, "Small and large signal modulation of 850nm oxide-confined vertical-cavity surface-emitting lasers," Advances in Vertical Cavity Surface Emitting Lasers in Trends in Optics and Photonics Series,  15, 69-74, (1997).

Appl. Opt. (1)

IEEE J. Solid-State Circuits (1)

R. Farjad-Rad, C.-K. K. Yang and M. A. Horowitz, "A 0.3- mm CMOS 8-GS/s 4-PAM Serial Link Transceiver," IEEE J. Solid-State Circuits 35, 757-764, (2000).
[CrossRef]

J. Lightwave Technol. (2)

S. Walkin and J. Conradi, "Multilevel Signaling for increasing the reach of 10Gbps Systems," J. Lightwave Technol. 17, 2235-2248 (1999).
[CrossRef]

K. Yonenage and S. Kuwano, "Dispersion tolerant optical transmission using doubinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537, (1997).
[CrossRef]

Microwave Opt.l Technol. Lett. (1)

See Sang-Hoon Lee, Yong-Sang Cho, Bon-Jo Koo, Sang-Kook Han, "Optimization of a small to-can package electrical design for SFF/SFP optical transceiver module," Microwave Opt.l Technol. Lett. 40, 239-242, (2003).
[CrossRef]

Opt. Quantum Electron. (1)

RichardJ. S. Bates, Daniel M. Kuchta, Kenneth P. Jackson, "Improved Multimode Fiber Link BER Calculations due to Modal Noise and Non Self-Pulsating Laser Diodes," Opt. Quantum Electron. 27,203-224 (1995).
[CrossRef]

Other (10)

G. P. Agrawal, "Fiber Optics Communication Systems," 2nd ed., John Wiley and Sons, p. 180-182, (1997).

P. Voois, N. Swenson, and T. Lindsay, "Extending the Ethernet Link Model for EDC and Modulation Format," http://grouper.ieee.org/groups/802/3/10GMMFSG/public/mar04/voois_1_0304.pdf

<other>. We have not factored in the effects from the CMOS circuitry which could be the dominate source of rms jitter and thereby mask out other components that contribute to this metric.</other>

Dawei Huang, "Free Space Optical Interconnect For Computing System- Design, Optimization and Implementation," PhD Thesis, University of California, San Diego, to be published Dec (2006)

Vladimir Stojanovic, "Channel-Limited High-Speed Links: Modeling, Analysis And Design, PhD Thesis, Stanford University," 2004

LarryA.  Coldren and Scott W. Corzine, "Diode Lasers and Photonic Integrated Circuits," pg 200, John Wiley and Sons (1995)

A. Adamiecki, M. Duelk, J.H. Sinsky, M. Mandich: "Scalability of Duobinary Signaling to 25Gb/s for 100 GbE Applications," IEEE 802.3ap Task Force Meeting, (November 2004). http://www.ieee802.org/3/ap/public/nov04/adamiecki_01_1104.pdf

H. Wu, J. Tiemo, P. Pepeljugoski, J. Schaub,S. Gowda, J. Kask, and A. Hajimir, "Differential 4-tap and 7-tap Transverse Filters in SiGe for 10Gh/s Multimode Fiber Optic" Link equalization" 2003 IEEE Intemational Solid State Circuit Conference. pp 180-181, February 2003.
[CrossRef]

David Cunningham, "Multilevel Modulation for 10GbE:Link and Component Specification," see http://grouper.ieee.org/groups/802/3/10G_study/public/july99/cunningham_1_0799.pdf.

C. Pelard, E. Gebara, A. J. Kim, M. Vrazel, E. J. Peddi, V. M. S. Hietala, Bajekal, S. E.  Ralph, and J. Laska, "Multilevel signaling and equalization over multimode fiber at 10 Gbit/s," Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003. 25th Annual Technical Digest 2003. IEEE, p.197-199, (2003)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) and (b). Left, Fig. 1(a) experimental setup. Right, Fig. 1(b). L-I-V characteristic measured for the Emcore 10Gbps VCSEL used in experiments described in the text. The inset shows the approximate mapping of the PAM-4 signal levels onto this VCSEL. The horizontal dotted line is the approximate bias voltage applied to the VCSEL. The vertical dotted lines shows the approximate voltage where the PAM–4 swing maps onto the I-V VCSEL characteristic. The dotted sloping line represents a linear output power versus current relationship for this VCSEL.

Fig. 2.
Fig. 2.

Small signal response from a 2.5 and 10Gbps VCSEL. The bias current for the 2.5Gbps VCSEL was 14 mA and the peak at 8GHz is from the resonant frequency of the VCSEL. The bias current for the 10Gbps VCSEL was 6 mA.

Fig. 3.
Fig. 3.

(a) and (b). Top (a), BER at 4.9Gbps versus amplitude margins comparing PAM-4 and bottom (b), binary signaling when detected by the eye tool on the CMOS chip. Both eye patterns is shown for each case, again taken with a scope tool included on chip.

Fig. 4.
Fig. 4.

(a) and (b). (a) BER at 4.9Gbps versus timing margins comparing PAM-4 and (b) binary signaling when detected by the eye tool on the CMOS chip.

Fig. 5.
Fig. 5.

BER versus attenuated power for sensitivity comparing PAM-4 and binary using the 10Gbps VCSEL.

Fig. 6.
Fig. 6.

An 8 Gbps PAM-4 optical eye using the 10Gbps VCSEL.

Fig. 7.
Fig. 7.

(a) Simulated small signal response for a 10Gbps VCSEL (b) Simulated NRZ eye diagram at 10Gbps (c) Simulated PAM4 eye diagram at 20Gbps. Resonance frequency of device is 10GHz. Damping ratio varies (0.25, 0.5, 0.75 and 1).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

penalty = ( M 1 ) ( ln ( M ) ) 1 2
20 log ( 2 2 1 ) = 9.54 dB
SNR degradation = log ( 2 ) SNR slope
SNR slope > 32 dB dec

Metrics