Abstract

The incremental deposition of a thin overlay on the cladding of a long-period fiber grating (LPFG) induces important resonance wavelength shifts in the transmission spectrum. The phenomenon is proved theoretically with a vectorial method based on hybrid modes and coupled mode theory, and experimentally with electrostatic self-assembly monolayer process. The phenomenon is repeated periodically for specific overlay thickness values with the particularity that the shape of the resonance wavelength shift depends on the thickness of the overlay. The main applications are the design of wide optical filters and multiparameter sensing devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457–466 (1999).
    [CrossRef] [PubMed]
  2. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003).
    [CrossRef]
  3. J. R. Qiang and H. E. Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
    [CrossRef]
  4. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  5. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
    [CrossRef] [PubMed]
  6. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
    [CrossRef]
  7. I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. 30, 720–722 (2005).
    [CrossRef] [PubMed]
  8. I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23, 4192–4199 (2005).
    [CrossRef]
  9. Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings,” Opt. Express 13, 2808–2813 (2005).
    [CrossRef] [PubMed]
  10. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 21, 324–325 (2006).
    [CrossRef]
  11. Q. Chen, J. Lee, M. R. Lin, Y. Wang, S. S. Yin, Q. M. Zhang, and K. A. Reichard “Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model,” J. Lightwave Technol. 24, 2954–2962 (2006).
    [CrossRef]
  12. A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
    [CrossRef] [PubMed]
  13. P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
    [CrossRef]
  14. I. Del Villar, I. R. Matias, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period gratings with overlay deposition,” Opt. Express 13, 56–69 (2005).
    [CrossRef] [PubMed]
  15. I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A,  23, 651–658 (2006).
    [CrossRef]
  16. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long- period fiber gratings having arbitrary azimutal/radial refractive index variation,” J. Lightwave Technol.,  21, 218–227, (2003).
    [CrossRef]
  17. T. Erdogan, “Cladding-mode resonances in short- and long- period fiber grating filters,” J. Opt. Soc. Am. A,  14, 1760–1773 (1997).
    [CrossRef]
  18. S. Guo, S. Albin, and S. Rogowski, “Comparative analysis of Bragg fibers,” Opt. Express 12, 198–207 (2004).
    [CrossRef] [PubMed]
  19. I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period gratings with deposition of low-refractive-index materials,” Opt. Lett.,  30, 2363–2365 (2005).
    [CrossRef] [PubMed]
  20. G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science,  277, 1232–1237 (1997).
    [CrossRef]
  21. J. Choi and M. F. Rubner, “Influence of the degree of Ionization on Weak Polyelectrolyte Multilayer Assembly,” Macromolecules,  38, 116–124 (2005).
    [CrossRef]

2006 (4)

2005 (7)

I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23, 4192–4199 (2005).
[CrossRef]

I. Del Villar, I. R. Matias, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period gratings with overlay deposition,” Opt. Express 13, 56–69 (2005).
[CrossRef] [PubMed]

I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. 30, 720–722 (2005).
[CrossRef] [PubMed]

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings,” Opt. Express 13, 2808–2813 (2005).
[CrossRef] [PubMed]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period gratings with deposition of low-refractive-index materials,” Opt. Lett.,  30, 2363–2365 (2005).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

J. Choi and M. F. Rubner, “Influence of the degree of Ionization on Weak Polyelectrolyte Multilayer Assembly,” Macromolecules,  38, 116–124 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

1999 (1)

1998 (1)

J. R. Qiang and H. E. Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

1997 (3)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Achaerandio, M.

Albin, S.

Anemogiannis, E.

Arregui, F. J.

Ashwell, G. J.

Bhatia, V.

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457–466 (1999).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Campopiano, S.

A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

Chen, H. E.

J. R. Qiang and H. E. Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

Chen, Q.

Choi, J.

J. Choi and M. F. Rubner, “Influence of the degree of Ionization on Weak Polyelectrolyte Multilayer Assembly,” Macromolecules,  38, 116–124 (2005).
[CrossRef]

Contesta, L.

A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

Cooper, K. L.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 21, 324–325 (2006).
[CrossRef]

Cusano, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

Cutolo, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

Decher, G.

G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science,  277, 1232–1237 (1997).
[CrossRef]

Del Villar, I.

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Cladding-mode resonances in short- and long- period fiber grating filters,” J. Opt. Soc. Am. A,  14, 1760–1773 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Gaylord, T. K.

Giordano, M.

A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

Glytsis, E. N.

Guerra, G.

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

Guo, S.

Heflin, J. R.

Iadicicco, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
[CrossRef]

Judkins, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Kim, D. W.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 21, 324–325 (2006).
[CrossRef]

Lalanne, P.

Lee, J.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Lin, M. R.

Matias, I. R.

Pilla, P.

A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

Qiang, J. R.

J. R. Qiang and H. E. Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

Ramachandran, S.

Rees, N. D.

Reichard, K. A.

Rogowski, S.

Rubner, M. F.

J. Choi and M. F. Rubner, “Influence of the degree of Ionization on Weak Polyelectrolyte Multilayer Assembly,” Macromolecules,  38, 116–124 (2005).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Slusher, R. E.

Stark, J. B.

Stolen, R. H.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
[CrossRef]

Vengsarkar, A. M.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Wang, A.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 21, 324–325 (2006).
[CrossRef]

Wang, Y.

Wang, Z. Y.

Yin, S. S.

Zhang, Q. M.

Zhang, Y.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 21, 324–325 (2006).
[CrossRef]

Electron. Lett. (2)

J. R. Qiang and H. E. Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 21, 324–325 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715, (2005).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (2)

Macromolecules (1)

J. Choi and M. F. Rubner, “Influence of the degree of Ionization on Weak Polyelectrolyte Multilayer Assembly,” Macromolecules,  38, 116–124 (2005).
[CrossRef]

Meas. Sci Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Science (1)

G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science,  277, 1232–1237 (1997).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (2279 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

LPFG coated with one overlay.

Fig. 2.
Fig. 2.

Spectrum as a function of the overlay thickness (simulation). Overlay index 1.52. Surrounding medium: water.

Fig. 3.
Fig. 3.

Transmission spectrum (simulation) for two overlay thickness values: a) 3780 nm; b) 4120 nm. Overlay index 1.52. Surrounding medium: water.

Fig. 4.
Fig. 4.

Spectrum as a function of the overlay thickness (simulation). Overlay index 1.52+0.0025i. Surrounding medium: water.

Fig. 5.
Fig. 5.

Spectrum as a function of the overlay thickness (simulation). Overlay index 1.52+0.0025i. Surrounding medium: air.

Fig. 6.
Fig. 6.

Spectrum as a function of the overlay thickness (experiment). Overlay index 1.52+0.0025i. Surrounding medium: water.

Fig. 7.
Fig. 7.

Transmission spectra for the first and the second transition of modes. The movie of the transitions can be seen in an avi file. [Media 1]

Fig. 8
Fig. 8

Spectrum as a function of the overlay thickness (experiment). Overlay index 1.52+0.0025i. Surrounding medium: air.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 01 ( λ ) + s 0 ζ 01 , 01 ( λ ) ( β 0 j ( λ ) + s 0 ζ 0 j , 0 j ( λ ) ) = 2 π Λ

Metrics