Abstract

The diffractive properties of gold films with a periodic lattice of sub-micron voids beneath the surface are investigated. It has been shown that nanoporous metal surfaces exhibit frequency-selective non-dispersive diffraction enhanced by Mie plasmons in nanovoids, which leads to absolute angular tolerance of the diffracted beam intensity that can be useful for a variety of applications covering angle-tolerant optical filters, deflectors, absorbers, and beam splitters. Diffraction spectra are measured and calculated to support these conclusions, showing good qualitative agreement.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928-936 (1935).
    [CrossRef]
  2. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
    [CrossRef]
  3. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
    [CrossRef]
  4. J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
    [CrossRef]
  5. W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
    [CrossRef]
  6. N. Stefanou, A. Modinos, and V. Yannopapas, "Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
    [CrossRef]
  7. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408(1)-085408(9) (2005).
  8. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).
  9. T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
    [CrossRef] [PubMed]
  10. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating," Phys. Rev. E 61, 5900-5906 (2000).
    [CrossRef]
  11. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999).
    [CrossRef]
  12. D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
    [CrossRef]
  13. L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003).
    [CrossRef]
  14. M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004).
    [CrossRef]
  15. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
    [CrossRef]
  16. N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998).
    [CrossRef]
  17. N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000).
    [CrossRef]
  18. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  19. The experimental and theoretical Mie energies do not exactly coincide, and the assumption for a non-unity effective dielectric constant inside the nanopores ensures their agreement. Currently we are investigating the origin of this effect.
  20. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402(1)-155402(7) (2004).
    [CrossRef]

2006 (2)

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
[CrossRef] [PubMed]

2005 (4)

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
[CrossRef]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408(1)-085408(9) (2005).

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).

2004 (2)

M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402(1)-155402(7) (2004).
[CrossRef]

2003 (1)

L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003).
[CrossRef]

2001 (2)

N. Stefanou, A. Modinos, and V. Yannopapas, "Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

2000 (3)

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating," Phys. Rev. E 61, 5900-5906 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

1999 (2)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999).
[CrossRef]

O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1935 (1)

R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928-936 (1935).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).

Abdelsalam, M. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

Abdelsalem, M. E.

M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
[CrossRef] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).

M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004).
[CrossRef]

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
[CrossRef] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).

M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004).
[CrossRef]

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Bertolotti, M.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
[CrossRef]

Birkin, P. R.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Cambril, E.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cintra, S.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

Coyle, S.

M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004).
[CrossRef]

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Dong, H.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Dong, W.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Felbacq, D.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
[CrossRef]

Garc’ýa de Abajo, F. J.

García de Abajo, F. J.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408(1)-085408(9) (2005).

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402(1)-155402(7) (2004).
[CrossRef]

Ghanem, M. A.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Giovannini, H.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999).
[CrossRef]

Hendriks, M. A.

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating," Phys. Rev. E 61, 5900-5906 (2000).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kaler, E. W.

O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Kelf, T.

Kelf, T. A.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).

Kelly, J. J.

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

Kelly, K. L.

L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003).
[CrossRef]

Larciprete, M. C.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating," Phys. Rev. E 61, 5900-5906 (2000).
[CrossRef]

Lemarchand, F.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999).
[CrossRef]

Lenhoff, A. M.

O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Ming, N.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Modinos, A.

N. Stefanou, A. Modinos, and V. Yannopapas, "Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998).
[CrossRef]

Netti, M. C.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Popov, V. V.

T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
[CrossRef] [PubMed]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408(1)-085408(9) (2005).

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402(1)-155402(7) (2004).
[CrossRef]

Russell, A. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating," Phys. Rev. E 61, 5900-5906 (2000).
[CrossRef]

Scalora, M.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
[CrossRef]

Schatz, G. C.

L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003).
[CrossRef]

Sentenac, A.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999).
[CrossRef]

Sibilia, C.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
[CrossRef]

Stefanou, N.

N. Stefanou, A. Modinos, and V. Yannopapas, "Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998).
[CrossRef]

Sugawara, Y.

T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).

Teperik, T. V.

T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006).
[CrossRef] [PubMed]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408(1)-085408(9) (2005).

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402(1)-155402(7) (2004).
[CrossRef]

Tessier, P. M.

O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Vanmaekelbergh, D.

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

Velev, O. D.

O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Vos, W. L.

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

Wang, Z.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Whittaker, D.M.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Wijnhoven, J. E. G. J.

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

Wood, R. W.

R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928-936 (1935).
[CrossRef]

Yannopapas, V.

N. Stefanou, A. Modinos, and V. Yannopapas, "Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998).
[CrossRef]

Yu, Z.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Zevenhuizen, S. J. M.

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

Zhan, P.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Zhao, L.

L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003).
[CrossRef]

Zhao, X.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Zhu, Y.

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

Adv. Mater. (3)

J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000).
[CrossRef]

W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006).
[CrossRef]

M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004).
[CrossRef]

Comput. Phys. Commun. (2)

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

Electrochemistry Communications (1)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999).
[CrossRef]

J. Phys. Chem. B (1)

L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003).
[CrossRef]

Nature (1)

O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928-936 (1935).
[CrossRef]

Phys. Rev. B (3)

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408(1)-085408(9) (2005).

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402(1)-155402(7) (2004).
[CrossRef]

Phys. Rev. E (2)

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating," Phys. Rev. E 61, 5900-5906 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001).
[CrossRef]

Solid State Commun. (1)

N. Stefanou, A. Modinos, and V. Yannopapas, "Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001).
[CrossRef]

Other (1)

The experimental and theoretical Mie energies do not exactly coincide, and the assumption for a non-unity effective dielectric constant inside the nanopores ensures their agreement. Currently we are investigating the origin of this effect.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM image of nanoporous metal structure with close-packed void lattice grown up to a thickness t (b) the theoretical model of nanoporous metal surface with a 2D hexagonal lattice of spherical voids.

Fig. 2.
Fig. 2.

The first Brillouin zone and the photons wavevectors. Plane of incidence is along Γ-M direction.

Fig. 3.
Fig. 3.

Specular reflectivity as a function of photon energy ħω and angle of incidence θ (a) measured from and (b) calculated for a surface of nanoporous gold formed by a hexagonal arrangement of close-packed spherical voids of diameter d=500 nm buried just beneath the metal surface. The plane of incidence is along the Γ-M direction (azimuthal angle ϕ=0). Black and white lines labeled with q-1-1 mark the frequencies of surface plasmon-polaritons and grazing photons, respectively, estimated in the ‘empty lattice approximation’. The horizontal white lines mark the energy of the fundamental (l=1) and the second (l=2) Mie-plasmon mode of a single void in bulk gold. The calculated and measured reflectivity spectra are normalized to the reflectivity of a homogeneous planar surface of bulk gold.

Fig. 4.
Fig. 4.

Intensity of the diffracted beam with in-plane wavevector q-1, -1 as a function of photon energy ħω and angle of incidence θ (a) measured from and (b) calculated for a surface of nanoporous gold formed by a hexagonal arrangement of close-packed spherical voids of diameter d=500 nm buried just beneath the metal surface. The plane of incidence is along the Γ-M direction (azimuthal angle ϕ=0). White lines labeled with q-1-1 mark the frequencies of grazing photons, estimated in the ‘empty lattice approximation’. The horizontal white lines mark the energy of the fundamental (l=1) and the second (l=2) Mie-plasmon mode of a single void in bulk gold. The calculated intensity of the diffracted beamis normalized to the intensity of the incident light. The right panels show themeasured and calculated spectra corresponding to two angles of incidence, 30° (blue line) and 50° (red line), marked by dashed white vertical lines in the contour maps.

Fig. 5.
Fig. 5.

Calculated intensity of the first-order diffracted beam with in-plane wavevector q-1, -1 versus photon energy ħω for a surface of nanoporous gold formed by a hexagonal arrangement of spherical voids of different diameter d: from 380 to 500 nm (from right to left, in steps of 20 nm). The angle of incidence is 50°. The lattice constant (|a|=515 nm) is kept unchanged in these calculations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω = c q pq ,
q pq 2 = ( ω c ) 2 ( ω 2 ω p 2 ) ( 2 ω 2 ω p 2 ) ,
h l ( 1 ) ( ρ 0 ) [ ρ 1 j l ( ρ 1 ) ] = ε ( ω ) j l ( ρ 1 ) [ ρ 0 h l ( 1 ) ( ρ 0 ) ] ,

Metrics