Abstract

We report on the first demonstration of flat substrate imaging gratings fabricated by deep ultraviolet (DUV) photoreduction lithography, which uniquely offers sub-100-nm resolution and spatial coherence over centimeter scales. Reflective focusing gratings, designed according to holographic principle, were fabricated on 300-mm silicon wafers by immersion DUV lithography. Spatial coherence of the fabrication process is evident in measured diffraction-limited imaging function. Flat-substrate gratings, with lines of arbitrary spacing and curvature, offer both dispersion and general spatial wavefront transformation combining the function of multiple optical elements. Fabrication at the sub-100-nm resolution level allows high-line-count, low-order efficient gratings even into the deep ultraviolet region. Nanoreplication of gratings at the wafer level provides a pathway to devices of ultimate low cost.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems

Maciej Baranski, Sylwester Bargiel, Nicolas Passilly, Christophe Gorecki, Chenping Jia, Jörg Frömel, and Maik Wiemer
Appl. Opt. 54(22) 6924-6934 (2015)

Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory

Wanji Yu, Koji Takahara, Tsuyoshi Konishi, Tsutom Yotsuya, and Yoshiki Ichioka
Appl. Opt. 39(20) 3531-3536 (2000)

Fabrication of varied-line-spacing grating by elastic medium

Yongjun Xie, Xiangdong Xu, Yilin Hong, Ying Liu, Shaojun Fu, Shiping He, and Bangkun Jin
Opt. Express 12(17) 3894-3899 (2004)

References

  • View by:
  • |
  • |
  • |

  1. C. Greiner, D. Iazikov, and T. W. Mossberg, “Lithographically-fabricated planar holographic Bragg reflectors,” J. Lightwave Technol. 22, 136–145 (2004).
    [Crossref]
  2. J. J. Wanget al., “Wafer-based nanostructure manufacturing for integrated nanooptic devices,” J. Lightwave Technol. 32, 474–485 (2005).
    [Crossref]
  3. W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
    [Crossref]
  4. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography”, Opt. Express 14, 2440–2445 (2006).
    [Crossref] [PubMed]
  5. S. Ura, Y. Honzawa, T. Suhara, and H. Nishihara, “Reflection-type multiorder grating lens for three ultraviolet wavelengths,” Appl. Opt. 38, 3008–3011 (1999).
    [Crossref]
  6. Y. Hori, F. Sogawa, H. Asakure, M. Kato, and H. Serizawa, “Fabrication of a focusing grating mirror by electron beam lithography,” Appl. Opt. 29, 2522 (1990).
    [Crossref] [PubMed]
  7. S. Ura, T. Sasaki, and H. Nishihara, “Combination of grating lenses for color splitting and imaging,” Appl. Opt. 40, 5819–5825 (2001).
    [Crossref]
  8. S. Ura et al., “Planar reflection grating lens for compact spectroscopic imaging system,” Appl. Opt. 42, 175–180 (2003).
    [Crossref] [PubMed]
  9. G. Fortin and N. McCarthy, “Chirped holographic grating used as the dispersive element in an optical spectrometer,” Appl. Opt. 44, 4874–4883 (2005).
    [Crossref] [PubMed]

2006 (1)

2005 (2)

J. J. Wanget al., “Wafer-based nanostructure manufacturing for integrated nanooptic devices,” J. Lightwave Technol. 32, 474–485 (2005).
[Crossref]

G. Fortin and N. McCarthy, “Chirped holographic grating used as the dispersive element in an optical spectrometer,” Appl. Opt. 44, 4874–4883 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (1)

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

2001 (1)

1999 (1)

1990 (1)

Asakure, H.

Baets, R.

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

Beck, S.

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

Bienstmann, P.

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

Bogaerts, W.

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

Fortin, G.

Greiner, C.

Honzawa, Y.

Hori, Y.

Iazikov, D.

Kato, M.

Krauss, T. F.

Luyssaert, B.

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

McCarthy, N.

Michaeli, A.

Mossberg, T. W.

Nishihara, H.

Salib, M.

Sasaki, T.

Serizawa, H.

Settle, M.

Sogawa, F.

Suhara, T.

Taillaert, D.

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

Ura, S.

Wang, J. J.

J. J. Wanget al., “Wafer-based nanostructure manufacturing for integrated nanooptic devices,” J. Lightwave Technol. 32, 474–485 (2005).
[Crossref]

Wiaux, V.

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

Appl. Opt. (5)

J. Lightwave Technol. (2)

J. J. Wanget al., “Wafer-based nanostructure manufacturing for integrated nanooptic devices,” J. Lightwave Technol. 32, 474–485 (2005).
[Crossref]

C. Greiner, D. Iazikov, and T. W. Mossberg, “Lithographically-fabricated planar holographic Bragg reflectors,” J. Lightwave Technol. 22, 136–145 (2004).
[Crossref]

J. Sel. Top. Quantum. Electron. (1)

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beck, B. Luyssaert, P. Bienstmann, and R. Baets, “Fabrication of photonic crystals in Silicon-on-Insulator using 248-nm deep UV photolithography,” J. Sel. Top. Quantum. Electron. 8, 928–934 (2002).
[Crossref]

Opt. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic illustrating grating design by computer-based holography: din, source-substrate distance, γ, design input angle, Rm, radius of the mth circular grating line concentric about point C. (b) grating profile: w, linewidth, Λ, grating period, h, line height.

Fig. 2.
Fig. 2.

(a) Photograph of fabricated 12-inch silicon wafer containing focusing diffraction gratings. (b) scanning electron micrographs showing typical partial cross-section of one-dimensional focusing grating, Λ=464 nm, top line width=122 nm, bottom line width=205 nm, h=236 nm.

Fig. 3.
Fig. 3.

Schematic of optical test setup. din, distance of input focal spot to grating, dout, distance of pinhole to grating (image distance). α (β) angle of input (diffracted) beam to grating normal.

Fig. 4.
Fig. 4.

Power profiles of focused grating output beams. (a) scan along dispersion plane of 1D focusing grating. (b) and (c) scans parallel and normal to dispersion plane, respectively, for 2D focusing grating. Dashed lines, power profiles simulated via Fresnel-Huygens diffraction theory. Observed grating performance is diffraction-limited.

Fig. 5.
Fig. 5.

(a) Photograph of optical test setup showing angularly dispersed grating output of 1D (top and bottom) and 2D (center) focusing gratings. (b) Close-up photograph of gratings on face of grating mount.

Fig. 6.
Fig. 6.

Image distance dout as a function of input angle for fixed wavelength λ=632.8 nm (a) and as a function of input wavelength for fixed input angle α≈38° (b). din=50 cm for both plots.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R m = ( d i n 2 + 2 ( d in 2 + a 2 ) 1 2 ( m λ 2 ) + ( m λ 2 ) 2 ) 1 2 .

Metrics