Abstract

We suggest and numerically demonstrate a design for Frequency Selective Surfaces (FSS) operating in the optical (visible and near-infrared) range. The position and width of the FSS bandpass do not depend on the angle of incidence and polarization state of the incoming light, allowing high transmission at any angle. The FSS is formed by annular apertures perforated in a metal film and arranged in a square array. Angle- and polarization-independent transmission properties are demonstrated for silver. These results can be extended to other metals as well as to other frequency domains.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B.A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley and sons, New York, 2000
    [CrossRef]
  2. S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
    [CrossRef]
  3. A. Sentenac and A.-L. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005)
    [CrossRef]
  4. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
    [CrossRef]
  5. E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, “Enhanced transmission due to nonplasmon resonances in one-and two-dimensional gratings,” Appl. Opt. 43, 999–1008 (2004)
    [CrossRef] [PubMed]
  6. A. Roberts and R. MacPhedran, “Bandpass Grids with Annular Apertures,” IEEE Trans. Antennas. Propag,  36, 607–611 (1988).
    [CrossRef]
  7. T. K. Wu, “Infrared filters for high-efficiency thermovoltaic devices,” Microwave and optical technology letters,  15, 9–12 (1997).
    [CrossRef]
  8. F.I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002)
    [CrossRef]
  9. A. Moreau, G. Granet, F. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11, 1131–1136 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1131
    [CrossRef] [PubMed]
  10. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986)
    [CrossRef]
  11. G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A: Pure. Appl. Opt 4, 145–149 (2002)
    [CrossRef]
  12. B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with square symmetry,” J. Opt. Soc. Am. A 23, 572–580 (2006)
    [CrossRef]
  13. The wavelength dependence of the dielectric constant of silver is described by a Drude model: ε=1-ωp2/(ω(ω+iγ)), where ωp=1.374×1016 rad.s-1 and γ=3.21×1013 rad.s-1.
  14. W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005)
    [CrossRef] [PubMed]
  15. J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611 (2005)
    [CrossRef] [PubMed]
  16. F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004)
    [CrossRef]
  17. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
    [CrossRef]
  18. Ph. Lalanne, J.C. Rodier, and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt.7422–426 (2005)
    [CrossRef]
  19. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006)
    [CrossRef] [PubMed]
  20. Q. Cao and Ph. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002)
    [CrossRef] [PubMed]
  21. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-70
    [CrossRef] [PubMed]
  22. J.T. Shen, P.B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005)
    [CrossRef] [PubMed]

2006 (2)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006)
[CrossRef] [PubMed]

B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with square symmetry,” J. Opt. Soc. Am. A 23, 572–580 (2006)
[CrossRef]

2005 (5)

2004 (2)

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004)
[CrossRef]

E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, “Enhanced transmission due to nonplasmon resonances in one-and two-dimensional gratings,” Appl. Opt. 43, 999–1008 (2004)
[CrossRef] [PubMed]

2003 (1)

2002 (3)

Q. Cao and Ph. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002)
[CrossRef] [PubMed]

F.I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002)
[CrossRef]

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A: Pure. Appl. Opt 4, 145–149 (2002)
[CrossRef]

2001 (1)

S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
[CrossRef]

2000 (1)

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[CrossRef]

1998 (1)

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
[CrossRef]

1997 (1)

T. K. Wu, “Infrared filters for high-efficiency thermovoltaic devices,” Microwave and optical technology letters,  15, 9–12 (1997).
[CrossRef]

1988 (1)

A. Roberts and R. MacPhedran, “Bandpass Grids with Annular Apertures,” IEEE Trans. Antennas. Propag,  36, 607–611 (1988).
[CrossRef]

1986 (1)

Astolfi, D.K.

S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
[CrossRef]

Bai, B.

Baida, F.

Baida, F. I.

Baida, F.I.

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004)
[CrossRef]

F.I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002)
[CrossRef]

Belkhir, A.

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004)
[CrossRef]

Bernal, M.-P.

Bonod, N.

Bruek, S.R.J.

W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005)
[CrossRef] [PubMed]

Cao, Q.

Q. Cao and Ph. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002)
[CrossRef] [PubMed]

Catrysse, P.B.

J.T. Shen, P.B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005)
[CrossRef] [PubMed]

Collin, S.

Doran, S.P.

S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
[CrossRef]

Dwir, B.

Ebbesen, T.W.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
[CrossRef]

Enoch, S.

E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, “Enhanced transmission due to nonplasmon resonances in one-and two-dimensional gratings,” Appl. Opt. 43, 999–1008 (2004)
[CrossRef] [PubMed]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[CrossRef]

Fan, S.

J.T. Shen, P.B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005)
[CrossRef] [PubMed]

Fan, W.

W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005)
[CrossRef] [PubMed]

Fehrembach, A.-L.

Gaylord, T. K.

Ghaemi, H. F.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
[CrossRef]

Gralak, B.

Granet, G.

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004)
[CrossRef]

A. Moreau, G. Granet, F. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11, 1131–1136 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1131
[CrossRef] [PubMed]

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A: Pure. Appl. Opt 4, 145–149 (2002)
[CrossRef]

Greffet, J.

Hoffmann, P.

Hugonin, J.P.

Ph. Lalanne, J.C. Rodier, and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt.7422–426 (2005)
[CrossRef]

Lalanne, Ph.

Q. Cao and Ph. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002)
[CrossRef] [PubMed]

Lezec, H. J.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
[CrossRef]

Li, L.

Lyszczarz, T.M.

S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
[CrossRef]

MacPhedran, R.

A. Roberts and R. MacPhedran, “Bandpass Grids with Annular Apertures,” IEEE Trans. Antennas. Propag,  36, 607–611 (1988).
[CrossRef]

Maillotte, H.

Malloy, K.J.

W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005)
[CrossRef] [PubMed]

Marquier, F.

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005)
[CrossRef] [PubMed]

Moharam, M. G.

Moreau, A.

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004)
[CrossRef]

A. Moreau, G. Granet, F. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11, 1131–1136 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1131
[CrossRef] [PubMed]

Munk, B.A.

B.A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley and sons, New York, 2000
[CrossRef]

Mussot, A.

Nevière, M.

E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, “Enhanced transmission due to nonplasmon resonances in one-and two-dimensional gratings,” Appl. Opt. 43, 999–1008 (2004)
[CrossRef] [PubMed]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[CrossRef]

Pardo, F.

Pelouard, J.

Perentes, A.

Ph. Lalanne,

Ph. Lalanne, J.C. Rodier, and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt.7422–426 (2005)
[CrossRef]

Plumey, J.-P.

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A: Pure. Appl. Opt 4, 145–149 (2002)
[CrossRef]

Popov, E.

E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, “Enhanced transmission due to nonplasmon resonances in one-and two-dimensional gratings,” Appl. Opt. 43, 999–1008 (2004)
[CrossRef] [PubMed]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006)
[CrossRef] [PubMed]

Raynolds, J.E.

S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
[CrossRef]

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[CrossRef]

Roberts, A.

A. Roberts and R. MacPhedran, “Bandpass Grids with Annular Apertures,” IEEE Trans. Antennas. Propag,  36, 607–611 (1988).
[CrossRef]

Rodier, J.C.

Ph. Lalanne, J.C. Rodier, and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt.7422–426 (2005)
[CrossRef]

Roussey, M.

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006)
[CrossRef] [PubMed]

Salvi, J.

Sandu, C.

Sentenac, A.

Shen, J.T.

J.T. Shen, P.B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005)
[CrossRef] [PubMed]

Spector, S.J.

S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
[CrossRef]

Sylvestre, T.

Tayeb, G.

Thio, T.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
[CrossRef]

Utke, I.

Van Labeke, D.

Wolff, P. A.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
[CrossRef]

Wu, T. K.

T. K. Wu, “Infrared filters for high-efficiency thermovoltaic devices,” Microwave and optical technology letters,  15, 9–12 (1997).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005)
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004)
[CrossRef]

IEEE Trans. Antennas. Propag (1)

A. Roberts and R. MacPhedran, “Bandpass Grids with Annular Apertures,” IEEE Trans. Antennas. Propag,  36, 607–611 (1988).
[CrossRef]

J. Opt. A: Pure. Appl. Opt (1)

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A: Pure. Appl. Opt 4, 145–149 (2002)
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. B (1)

S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz, and J.E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19, 2757–2760 (2001)
[CrossRef]

Microwave and optical technology letters (1)

T. K. Wu, “Infrared filters for high-efficiency thermovoltaic devices,” Microwave and optical technology letters,  15, 9–12 (1997).
[CrossRef]

Nature (1)

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength holes arrays,” Nature (London)  391, 667–669 (1998)
[CrossRef]

Opt. Commun. (1)

F.I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002)
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[CrossRef]

Phys. Rev. Lett. (4)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006)
[CrossRef] [PubMed]

Q. Cao and Ph. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002)
[CrossRef] [PubMed]

J.T. Shen, P.B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005)
[CrossRef] [PubMed]

W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005)
[CrossRef] [PubMed]

Other (3)

B.A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley and sons, New York, 2000
[CrossRef]

The wavelength dependence of the dielectric constant of silver is described by a Drude model: ε=1-ωp2/(ω(ω+iγ)), where ωp=1.374×1016 rad.s-1 and γ=3.21×1013 rad.s-1.

Ph. Lalanne, J.C. Rodier, and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt.7422–426 (2005)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sketch of the structure.

Fig. 2.
Fig. 2.

Calculated transmission through the FSS for normal incidence. (a) Evolution of the transmission efficiency (color scale) as a function of the metal film thickness and incident wavelength. (b) Cross section of Fig. 2(a) for two different thicknesses, h=100nm (solid line) and h=600nm (dashed line).

Fig. 3.
Fig. 3.

Calculated transmission through the FSS for h=100nm. (a) Evolution of the transmission efficiency (color scale) as a function of the angle of incidence and incident wavelength. (b) Cross section of (a) along the two vertical dashed lines.

Fig. 4.
Fig. 4.

Transmission spectra for θ=20°: TM (solid line) and TE (dashed line) for an azimuthal angle ψ=0°; TM (dotted line) and TE (dash-dotted line) for ψ=30°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t = t 1 t 2 e ik z h 1 + r 1 r 2 e 2 ik z h ,

Metrics