Abstract

In the paper, a method to calculate the time evolution turbulence wavefronts based on the covariance method is theoretically presented in detail. According to it, the time-evolution wavefronts disturbed by atmospheric turbulence were experimentally generated by our LC atmospheric turbulence simulator (ATS) based on liquid crystal on silicon (LCOS) with high pixel density, and measured with a wavefront sensor. The advantage of such a LC ATS over a conventional one is that it is flexible with considering the weather parameters of wind speed and Cn2, and is relatively easy to control.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors

Nicholas Devaney, Eugenie Dalimier, Thomas Farrell, Derek Coburn, Ruth Mackey, David Mackey, Francois Laurent, Elizabeth Daly, and Chris Dainty
Appl. Opt. 47(35) 6550-6562 (2008)

Bulk wind estimation and prediction for adaptive optics control systems

Luke C. Johnson, Donald T. Gavel, and Donald M. Wiberg
J. Opt. Soc. Am. A 28(8) 1566-1577 (2011)

Real-time liquid-crystal atmosphere turbulence simulator with graphic processing unit

Lifa Hu, Li Xuan, Dayu Li, Zhaoliang Cao, Quanquan Mu, Yonggang Liu, Zenghui Peng, and Xinhai Lu
Opt. Express 17(9) 7259-7268 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, “Results of two-dimensional time-evolved phase screen computer simulations,” in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE2471, 170–180 (1995).
    [Crossref]
  2. T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
    [Crossref]
  3. T. S. Taylor and D. A. Gregory, “Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion,” Opt. Laser Technol. 34, 665–669 (2002).
    [Crossref]
  4. S. Thomas, “A simple turbulence simulator for adaptive optics,” in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 766–773 (2004).
    [Crossref]
  5. M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, “Setting up a liquid crystal phase screen to simulate atmospheric turbulence,” in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE4124, 89–97 (2000).
    [Crossref]
  6. M. A. A. Neil, M. J. Booth, and T Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849–1851 (1998).
    [Crossref]
  7. D. J. Cho, S. T. Thdurman, J. T. Donner, and G. M. Morris, “Characteristics of a 128×128 liquid-crystal spatial light modulator for wave-front generation,” Opt. Lett. 23, 969–971 (1998).
    [Crossref]
  8. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  9. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
    [Crossref]
  10. M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadarmer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34, 4037–4051 (1995).
    [Crossref] [PubMed]
  11. F. Roddier, Adaptive optics in astronomy, (Cambridge, Cambridge University Press, 1999), pp. 9–56.
    [Crossref]

2002 (1)

T. S. Taylor and D. A. Gregory, “Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion,” Opt. Laser Technol. 34, 665–669 (2002).
[Crossref]

2000 (1)

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

1998 (2)

1995 (1)

1990 (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[Crossref]

1976 (1)

Booth, M. J.

Buscher, D. F.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Cho, D. J.

Clark, P.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Donner, J. T.

Dunlop, C.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Gamble, K. J.

K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, “Results of two-dimensional time-evolved phase screen computer simulations,” in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE2471, 170–180 (1995).
[Crossref]

Giles, M. K.

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, “Setting up a liquid crystal phase screen to simulate atmospheric turbulence,” in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE4124, 89–97 (2000).
[Crossref]

Gregory, D. A.

T. S. Taylor and D. A. Gregory, “Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion,” Opt. Laser Technol. 34, 665–669 (2002).
[Crossref]

Jimenez, R.

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, “Setting up a liquid crystal phase screen to simulate atmospheric turbulence,” in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE4124, 89–97 (2000).
[Crossref]

Kelly, T.-L.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Love, G.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Montera, D.

Morris, G. M.

Myers, R. M.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Myler, H. R.

K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, “Results of two-dimensional time-evolved phase screen computer simulations,” in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE2471, 170–180 (1995).
[Crossref]

Neil, M. A. A.

Noll, R. J.

Rabadi, W. A.

K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, “Results of two-dimensional time-evolved phase screen computer simulations,” in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE2471, 170–180 (1995).
[Crossref]

Rha, J.

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, “Setting up a liquid crystal phase screen to simulate atmospheric turbulence,” in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE4124, 89–97 (2000).
[Crossref]

Rhoadarmer, T. A.

Roddier, F.

F. Roddier, Adaptive optics in astronomy, (Cambridge, Cambridge University Press, 1999), pp. 9–56.
[Crossref]

Roddier, N.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[Crossref]

Roggemann, M. C.

Seward, A.

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, “Setting up a liquid crystal phase screen to simulate atmospheric turbulence,” in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE4124, 89–97 (2000).
[Crossref]

Sharples, R.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Taylor, T. S.

T. S. Taylor and D. A. Gregory, “Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion,” Opt. Laser Technol. 34, 665–669 (2002).
[Crossref]

Thdurman, S. T.

Thomas, S.

S. Thomas, “A simple turbulence simulator for adaptive optics,” in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 766–773 (2004).
[Crossref]

Vorontsov, M. A.

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, “Setting up a liquid crystal phase screen to simulate atmospheric turbulence,” in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE4124, 89–97 (2000).
[Crossref]

Weeks, A. R.

K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, “Results of two-dimensional time-evolved phase screen computer simulations,” in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE2471, 170–180 (1995).
[Crossref]

Welsh, B. M.

Wilson, T

Zadrozny, A.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[Crossref]

Opt. Express (1)

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 17, 368–374 (2000).
[Crossref]

Opt. Laser Technol. (1)

T. S. Taylor and D. A. Gregory, “Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion,” Opt. Laser Technol. 34, 665–669 (2002).
[Crossref]

Opt. Lett. (2)

Other (4)

S. Thomas, “A simple turbulence simulator for adaptive optics,” in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 766–773 (2004).
[Crossref]

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, “Setting up a liquid crystal phase screen to simulate atmospheric turbulence,” in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE4124, 89–97 (2000).
[Crossref]

F. Roddier, Adaptive optics in astronomy, (Cambridge, Cambridge University Press, 1999), pp. 9–56.
[Crossref]

K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, “Results of two-dimensional time-evolved phase screen computer simulations,” in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE2471, 170–180 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

rms as a function of number of Zernike modes N for different scaling factor Rz/r0

Fig. 2.
Fig. 2.

The schematic diagram of generating dynamic wavefronts.

Fig. 3.
Fig. 3.

Phase modulation for LCR-2500

Fig. 4.
Fig. 4.

Schematic diagram of the experimental setup, L1, L2 and L3: lens; H1 and H2: hole.

Fig. 5.
Fig. 5.

Index of phase structure function for turbulence Monte Carlo simulation

Fig. 6.
Fig. 6.

Simulated turbulence wavefront in unit of wavelength (left) and correspondent pre-120 Zernike modes coefficients (right).

Fig. 7.
Fig. 7.

Time series of 4 Kolmogorov turbulence wavefronts from left to right.

Tables (3)

Tables Icon

Table 1. Calculation parameters for turbulence simulation

Tables Icon

Table 2. Specifications of LCR-2500

Tables Icon

Table 3. Parameters used in the simulation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ N = 0.2944 N 3 2 ( R z r 0 ) 5 3 ( rad 2 )
r 0 = [ 0.423 ( 2 π λ ) 2 sec β path C n 2 ( h ) d h ] 3 5
C n 2 ( h ) = 5.94 × 10 23 h 10 e h ( v 27 ) + 2.7 × 10 16 e 2 h 3 + C n 2 ( 0 ) e 10 h

Metrics