Abstract

In the paper, a method to calculate the time evolution turbulence wavefronts based on the covariance method is theoretically presented in detail. According to it, the time-evolution wavefronts disturbed by atmospheric turbulence were experimentally generated by our LC atmospheric turbulence simulator (ATS) based on liquid crystal on silicon (LCOS) with high pixel density, and measured with a wavefront sensor. The advantage of such a LC ATS over a conventional one is that it is flexible with considering the weather parameters of wind speed and Cn2, and is relatively easy to control.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, "Results of two-dimensional time-evolved phase screen computer simulations," in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE 2471, 170-180 (1995).
    [CrossRef]
  2. T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
    [CrossRef]
  3. T. S. Taylor and D. A. Gregory, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion," Opt. Laser Technol. 34, 665-669 (2002).
    [CrossRef]
  4. S. Thomas, "A simple turbulence simulator for adaptive optics," in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, R. Ragazzoni, eds., Proc. SPIE 5490, 766-773 (2004).
    [CrossRef]
  5. M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, "Setting up a liquid crystal phase screen to simulate atmospheric turbulence," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4124, 89-97 (2000).
    [CrossRef]
  6. M. A. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23,1849-1851 (1998).
    [CrossRef]
  7. D. J. Cho, S. T. Thdurman, J. T. Donner, and G. M. Morris, "Characteristics of a 128×128 liquid-crystal spatial light modulator for wave-front generation," Opt. Lett. 23, 969-971 (1998).
    [CrossRef]
  8. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]
  9. N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Opt. Eng. 29, 1174-1180 (1990).
    [CrossRef]
  10. M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadarmer, "Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions," Appl. Opt. 34, 4037-4051 (1995).
    [CrossRef] [PubMed]
  11. F. Roddier, Adaptive optics in astronomy, (Cambridge, Cambridge University Press, 1999), pp. 9-56.
    [CrossRef]

2002 (1)

T. S. Taylor and D. A. Gregory, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion," Opt. Laser Technol. 34, 665-669 (2002).
[CrossRef]

2000 (1)

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

1998 (2)

1995 (1)

1990 (1)

N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Opt. Eng. 29, 1174-1180 (1990).
[CrossRef]

1976 (1)

Booth, M. J.

Buscher, D. F.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Cho, D. J.

Clark, P.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Donner, J. T.

Dunlop, C.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Gregory, D. A.

T. S. Taylor and D. A. Gregory, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion," Opt. Laser Technol. 34, 665-669 (2002).
[CrossRef]

Kelly, T.-L.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Love, G.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Montera, D.

Morris, G. M.

Myers, R. M.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Neil, M. A. A.

Noll, R. J.

Rhoadarmer, T. A.

Roddier, N.

N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Opt. Eng. 29, 1174-1180 (1990).
[CrossRef]

Roggemann, M. C.

Sharples, R.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Taylor, T. S.

T. S. Taylor and D. A. Gregory, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion," Opt. Laser Technol. 34, 665-669 (2002).
[CrossRef]

Thdurman, S. T.

Welsh, B. M.

Wilson, T.

Zadrozny, A.

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Opt. Eng. 29, 1174-1180 (1990).
[CrossRef]

Opt. Express (1)

T.-L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, "Dual-conjugate wavefront generation for adaptive optics," Opt. Express 17, 368-374 (2000).
[CrossRef]

Opt. Laser Technol. (1)

T. S. Taylor and D. A. Gregory, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion," Opt. Laser Technol. 34, 665-669 (2002).
[CrossRef]

Opt. Lett. (2)

Other (4)

S. Thomas, "A simple turbulence simulator for adaptive optics," in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, R. Ragazzoni, eds., Proc. SPIE 5490, 766-773 (2004).
[CrossRef]

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, "Setting up a liquid crystal phase screen to simulate atmospheric turbulence," in High-Resolution Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE 4124, 89-97 (2000).
[CrossRef]

F. Roddier, Adaptive optics in astronomy, (Cambridge, Cambridge University Press, 1999), pp. 9-56.
[CrossRef]

K. J. Gamble, A. R. Weeks, H. R. Myler, and W. A. Rabadi, "Results of two-dimensional time-evolved phase screen computer simulations," in Atmospheric Propagation and Remote Sensing IV, J. Christopher Dainty, ed., Proc. SPIE 2471, 170-180 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

rms as a function of number of Zernike modes N for different scaling factor Rz/r0

Fig. 2.
Fig. 2.

The schematic diagram of generating dynamic wavefronts.

Fig. 3.
Fig. 3.

Phase modulation for LCR-2500

Fig. 4.
Fig. 4.

Schematic diagram of the experimental setup, L1, L2 and L3: lens; H1 and H2: hole.

Fig. 5.
Fig. 5.

Index of phase structure function for turbulence Monte Carlo simulation

Fig. 6.
Fig. 6.

Simulated turbulence wavefront in unit of wavelength (left) and correspondent pre-120 Zernike modes coefficients (right).

Fig. 7.
Fig. 7.

Time series of 4 Kolmogorov turbulence wavefronts from left to right.

Tables (3)

Tables Icon

Table 1. Calculation parameters for turbulence simulation

Tables Icon

Table 2. Specifications of LCR-2500

Tables Icon

Table 3. Parameters used in the simulation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ N = 0.2944 N 3 2 ( R z r 0 ) 5 3 ( rad 2 )
r 0 = [ 0.423 ( 2 π λ ) 2 sec β path C n 2 ( h ) d h ] 3 5
C n 2 ( h ) = 5.94 × 10 23 h 10 e h ( v 27 ) + 2.7 × 10 16 e 2 h 3 + C n 2 ( 0 ) e 10 h

Metrics