Abstract

A Ti:Sapphire femtosecond laser with a pulse energy of 1.3 nJ at a 93 MHz repetition rate has been used to micro-machine optical gratings inside several silicone-based and non-silicone-based hydrogel polymers. By measuring the diffraction efficiency of the gratings at 632.8nm, we find as large as 0.06±0.005 average refractive index change within the irradiated area.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  3. D. Homoelle, S. Wielandy, AlexanderL. Gaeta, N. F. Borrelli, and Charlene Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  4. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, "Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses," Opt. Lett. 28, 2491-2493 (2003).
    [CrossRef] [PubMed]
  5. R. Osellame, N. Chiodo, G. D. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "Optical waveguide writing with a diode-pumped femtosecond oscillator," Opt. Lett. 29, 1900-1902 (2004).
    [CrossRef] [PubMed]
  6. Y. Nasu, M. Kohtoku, and Y. Hibino, "Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit," Opt. Lett. 30, 723-725 (2005).
    [CrossRef] [PubMed]
  7. A. M. Streltsov, and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  8. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26,93-95 (2001).
    [CrossRef]
  9. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26,1516-1518 (2001).
    [CrossRef]
  10. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing," Opt. Express 10, 645-652 (2002).
    [PubMed]
  11. Alexander M. Streltsov, and Nicholas F. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19,2496-2504 (2002).
    [CrossRef]
  12. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005).
    [CrossRef] [PubMed]
  13. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimentional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  14. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimentional structures," Opt. Lett. 23, 1745-1747 (1998).
    [CrossRef]
  15. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, "Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate)," Opt. Lett. 29, 1840-1842 (2004).
    [CrossRef] [PubMed]
  16. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, "Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses," Opt. Express 12, 4019-4024 (2004).
    [CrossRef] [PubMed]
  17. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005).
    [CrossRef] [PubMed]
  18. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Opt. Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  19. C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," App. Phys. A 76, 351-354 (2003).
    [CrossRef]
  20. D. Meshulach, Y. Barad, and Y. Silberberg, "Measurement of ultrashort optical pulses by third-harmonic generation," J. Opt. Soc. Am. B 14, 2122-2125 (1997).
    [CrossRef]
  21. J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
    [CrossRef]
  22. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Control of the cross-sectional shape of a hollow microchannel embedded in photo structurable glass by use of a femtosecond laser," Opt. Lett. 28,55-57 (2003).
    [CrossRef] [PubMed]
  23. G. Zhou, M. J. Ventura, and M. Gu, "Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer," Opt. Express 13, 4390-4395 (2005).
    [CrossRef] [PubMed]

2005 (5)

2004 (3)

2003 (3)

2002 (2)

2001 (3)

1999 (1)

1998 (2)

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimentional structures," Opt. Lett. 23, 1745-1747 (1998).
[CrossRef]

1997 (2)

1996 (2)

Aiello, L.

Alexander, S.

Arai, A. Y.

Asano, T.

Barad, Y.

Barty, C. P. J.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

Borrelli, N. F.

Borrelli, Nicholas F.

Bovatsek, J.

Brakenhoff, G. J.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

Brodeur, A.

Callan, J. P.

Cerullo, G.

Cheng, Y.

Chiodo, N.

Davis, K. M.

De Nicola, S.

Doan, V.

Eaton, S. M.

Ferraro, P.

Finizio, A.

Finlay, R. J.

Fittinghoff, D. N.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

Fujimoto, J. G.

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," App. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26,93-95 (2001).
[CrossRef]

Glezer, E. N.

Gu, M.

Hartl, I.

Her, T. H.

Herman, P. R.

Hibino, Y.

Hirao, K.

Homoelle, D.

Huang, L.

Ippen, E. P.

Itoh, K.

Kawachi, M.

Kawata, S.

Killi, A.

Kohtoku, M.

Kopf, D.

Kowalevicz, A. M.

Kuroiwa, Y.

Laporta, P.

Lederer, M.

Lopez, C.

Maruo, S.

Maselli, V.

Masuda, M.

Mazur, E.

Meshulach, D.

Midorikawa, K.

Milosavljevic, M.

Minoshima, K.

Miura, K.

Morgner, U.

Muller, M.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

Nakamura, O.

Narita, Y.

Nasu, Y.

Nishii, J.

Osellame, R.

Pierattini, G.

Ramponi, R.

Richardson, K.

Richardson, M.

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," App. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26,93-95 (2001).
[CrossRef]

Schwartz, B. J.

Shah, L.

Shihoyama, K.

Silberberg, Y.

Squier, J. A.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

Streltsov, A. M.

Streltsov, Alexander M.

Sugimoto, N.

Sugioka, K.

Taccheo, S.

Takeshima, N.

Tanaka, S.

Toyoda, K.

Valle, G. D.

Ventura, M. J.

Vrijen, R.

Watanabe, W.

Wielandy, S.

Wilson, K. R.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

Witzgall, G.

Yablonovitch, E.

Yamada, K.

Yin, A.

Yoshino, F.

Zavelani-Rossi, M.

Zhang, H.

Zhou, G.

Zoubir, A.

App. Phys. A (1)

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," App. Phys. A 76, 351-354 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Muller, and G. J. Brakenhoff, "Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation," Opt. Commun. 147, 153-156 (1998).
[CrossRef]

Opt. Express (5)

Opt. Lett. (14)

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005).
[CrossRef] [PubMed]

Y. Nasu, M. Kohtoku, and Y. Hibino, "Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit," Opt. Lett. 30, 723-725 (2005).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Control of the cross-sectional shape of a hollow microchannel embedded in photo structurable glass by use of a femtosecond laser," Opt. Lett. 28,55-57 (2003).
[CrossRef] [PubMed]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, "Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses," Opt. Lett. 28, 2491-2493 (2003).
[CrossRef] [PubMed]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, "Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate)," Opt. Lett. 29, 1840-1842 (2004).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, G. D. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "Optical waveguide writing with a diode-pumped femtosecond oscillator," Opt. Lett. 29, 1900-1902 (2004).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimentional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimentional structures," Opt. Lett. 23, 1745-1747 (1998).
[CrossRef]

D. Homoelle, S. Wielandy, AlexanderL. Gaeta, N. F. Borrelli, and Charlene Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
[CrossRef] [PubMed]

A. M. Streltsov, and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett. 26, 42-43 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26,93-95 (2001).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26,1516-1518 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Experimental setup for femtosecond micro-machining

Fig. 2.
Fig. 2.

Transmission spectra of PV2526-164, RD1817 and HEMA B

Fig. 3.
Fig. 3.

Samples are placed in a hydrating solution between two microscope slides and irradiated with 30 fs pulses. The sample holder is translated continuously.

Figs. 4. (a) and (b).
Figs. 4. (a) and (b).

(a). and 4 (b). DIC and PC images of a grating in PV2526-164

Figs. 4. (c) and (d)
Figs. 4. (c) and (d)

(c). and 4 (d). DIC and PC images of a grating in RD1817

Figs. 4. (e) and (f)
Figs. 4. (e) and (f)

(e). and 4. (f). DIC and PC images of a grating in HEMA B

Fig. 5.
Fig. 5.

Cross section of one grating line formed inside PV2526-164 (a) with spherical aberration correction, (b) without spherical aberration correction

Fig. 6. (a).
Fig. 6. (a).

Diffraction pattern of the grating fabricated in PV2526-164

Fig. 6. (b).
Fig. 6. (b).

Diffraction pattern of the grating fabricated in RD1817

Fig. 6. (c).
Fig. 6. (c).

Diffraction pattern of the grating fabricated in HEMA B

Fig. 7.
Fig. 7.

Using 1st order diffraction efficiency to calculate refractive index change in PV2526-164

Tables (1)

Tables Icon

Table 1. Parameters of different hydrogel polymers

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m λ = d sin θ
t ( x 0 , y 0 ) = ( e i ϕ 2 e i ϕ 1 ) rect ( x 0 a ) * 1 d comb ( x 0 d ) + e i ϕ 1
T ( f x , f y ) = F { t ( x 0 , y 0 ) } = ( e i ϕ 2 e i ϕ 1 ) a sin c ( a f x ) comb ( d f x ) δ ( f y ) + e i ϕ 1 δ ( f x , f y )
I ( x , y ) = ( 1 λ z ) 2 × [ ( e i ϕ 2 e i ϕ 1 ) a d m = sin c ( a m d ) δ ( x λ z m d , y λ z ) + e i ϕ 1 δ ( x λ z , y λ z ) ] 2
I 0 = ( 1 λ z ) 2 × [ ( e i 2 π × ( n + Δ n ) × b λ e i 2 π × n × b λ ) a d + e i 2 π × n × b λ ] 2
I 1 = ( 1 λ z ) 2 × [ ( e i 2 π × ( n + Δ n ) × b λ e i 2 π × n × b λ ) a d sin c ( a d ) ] 2
I 2 = ( 1 λ z ) 2 × [ ( e i 2 π × ( n + Δ n ) × b λ e i 2 π × n × b λ ) a d sin c ( 2 a d ) ] 2

Metrics