Abstract

A novel scheme for an ultrahigh-speed all-optical half adder based on four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is proposed. This scheme is free of pattern effect, due to using the polarization-shift-keying (PolSK) modulation format. By numerical simulation, the output power level of logic “1” dependence on the operating conditions, such as two input signal powers, injection current, and input signal wavelength, are investigated in detail using the broad-band model of this all-optical half adder.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
    [CrossRef]
  2. A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
    [CrossRef]
  3. J. H. Kim, Y. T. Byun, Y. M. Jhon, S. L.ee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun.,  218, 345-349 (2003).
    [CrossRef]
  4. S. H. Kim, J. H. Kim, J. W. Choi, C. W. Son, S. H. Ok, Y. T. Byun, Y. M. Jhon, S. Lee, D. Ha Woo, and S. H. Kim, "All-optical half adder using single mechanism of XGM in semiconductor optical amplifiers," in Semiconductor Lasers and Applications II J. Yao, Y. J. Chen, and S. Lee, eds., Proc. SPIE 5628, 94-101 (2005).
    [CrossRef]
  5. D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
    [CrossRef]
  6. S. Kumar, D. Gurkan, and A. E. Willner, "All-optical half adder using a PPLN waveguide and an SOA," in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WN2 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2004-WN2.
  7. Z. Li, and G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
    [CrossRef]
  8. M. M. Matalgah, and R. M. Radaydeh, "Hybrid frequency-polarization shift-keying modulation for optical transmission," J. Lightwave Technol. 23, 1152-1163 (2005).
    [CrossRef]
  9. R. Calvani, R. Caponi, and F. Cisternino, "Polarization phase-shift keying: A coherent transmission technique with differential Heterodyne detection," Electron. Lett. 24, 642-643 (1988).
    [CrossRef]
  10. S. Benedetto, R. Gaudino, and P. Poggiolini, "Performance of coherent optical polarization shift keying modulation in the presence of phase noise," IEEE Trans. Commun. 43, 1603-1612 (1995).
    [CrossRef]
  11. S. Benedetto, and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun. 40, 708-721 (1992).
    [CrossRef]
  12. N. C. Kothari, and DanielJ. Blumenthal, "Influence of gain saturation, gain asymmetry, and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers," IEEE J. Quantum Electron. 32, 1810-1816 (1996).
    [CrossRef]
  13. H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004).
    [CrossRef]
  14. B. Mikkelson, "Optical amplifier and their system applications," Ph.D dissertation, Denmark Univ. Technol. 163-164 (1994).
  15. G. Talli, and M. J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modeling and experiments," Opt. Commun. 218, 161-166 (2003).
    [CrossRef]
  16. P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, "Novel all-optical AND and NOR Gates based on semiconductor fiber ring laser," Acta Physica Sinica,  56, (2007) (to be published).

2007 (1)

P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, "Novel all-optical AND and NOR Gates based on semiconductor fiber ring laser," Acta Physica Sinica,  56, (2007) (to be published).

2006 (1)

Z. Li, and G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

2005 (1)

2004 (3)

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004).
[CrossRef]

2003 (2)

G. Talli, and M. J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modeling and experiments," Opt. Commun. 218, 161-166 (2003).
[CrossRef]

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. L.ee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun.,  218, 345-349 (2003).
[CrossRef]

1998 (1)

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

1996 (1)

N. C. Kothari, and DanielJ. Blumenthal, "Influence of gain saturation, gain asymmetry, and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers," IEEE J. Quantum Electron. 32, 1810-1816 (1996).
[CrossRef]

N. C. Kothari, and DanielJ. Blumenthal, "Influence of gain saturation, gain asymmetry, and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers," IEEE J. Quantum Electron. 32, 1810-1816 (1996).
[CrossRef]

1995 (1)

S. Benedetto, R. Gaudino, and P. Poggiolini, "Performance of coherent optical polarization shift keying modulation in the presence of phase noise," IEEE Trans. Commun. 43, 1603-1612 (1995).
[CrossRef]

1992 (1)

S. Benedetto, and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun. 40, 708-721 (1992).
[CrossRef]

1988 (1)

R. Calvani, R. Caponi, and F. Cisternino, "Polarization phase-shift keying: A coherent transmission technique with differential Heterodyne detection," Electron. Lett. 24, 642-643 (1988).
[CrossRef]

Adams, M. J.

G. Talli, and M. J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modeling and experiments," Opt. Commun. 218, 161-166 (2003).
[CrossRef]

Avramopoulos, H.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Benedetto, S.

S. Benedetto, R. Gaudino, and P. Poggiolini, "Performance of coherent optical polarization shift keying modulation in the presence of phase noise," IEEE Trans. Commun. 43, 1603-1612 (1995).
[CrossRef]

S. Benedetto, and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun. 40, 708-721 (1992).
[CrossRef]

Blow, K. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Bogris, A.

Byun, Y. T.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. L.ee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun.,  218, 345-349 (2003).
[CrossRef]

Calvani, R.

R. Calvani, R. Caponi, and F. Cisternino, "Polarization phase-shift keying: A coherent transmission technique with differential Heterodyne detection," Electron. Lett. 24, 642-643 (1988).
[CrossRef]

Caponi, R.

R. Calvani, R. Caponi, and F. Cisternino, "Polarization phase-shift keying: A coherent transmission technique with differential Heterodyne detection," Electron. Lett. 24, 642-643 (1988).
[CrossRef]

Cisternino, F.

R. Calvani, R. Caponi, and F. Cisternino, "Polarization phase-shift keying: A coherent transmission technique with differential Heterodyne detection," Electron. Lett. 24, 642-643 (1988).
[CrossRef]

Daniel, N. C.

N. C. Kothari, and DanielJ. Blumenthal, "Influence of gain saturation, gain asymmetry, and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers," IEEE J. Quantum Electron. 32, 1810-1816 (1996).
[CrossRef]

de Waardt, H.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Dorren, H. J. S.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Gaudino, R.

S. Benedetto, R. Gaudino, and P. Poggiolini, "Performance of coherent optical polarization shift keying modulation in the presence of phase noise," IEEE Trans. Commun. 43, 1603-1612 (1995).
[CrossRef]

Guekos, G.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Hasama, T.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Houbavlis, T.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Huang, D. X.

P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, "Novel all-optical AND and NOR Gates based on semiconductor fiber ring laser," Acta Physica Sinica,  56, (2007) (to be published).

Ishikawa, H.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Jhon, Y. M.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. L.ee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun.,  218, 345-349 (2003).
[CrossRef]

Ju, H.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Kanellos, G. T.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Kawashima, H.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Kehayas, E.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Kelly, A. E.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Khoe, G.-D.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Kim, J. H.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. L.ee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun.,  218, 345-349 (2003).
[CrossRef]

Kothari, N. C.

N. C. Kothari, and DanielJ. Blumenthal, "Influence of gain saturation, gain asymmetry, and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers," IEEE J. Quantum Electron. 32, 1810-1816 (1996).
[CrossRef]

Li, G.

Z. Li, and G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

Li, P. L.

P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, "Novel all-optical AND and NOR Gates based on semiconductor fiber ring laser," Acta Physica Sinica,  56, (2007) (to be published).

Li, Z.

Z. Li, and G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Manning, R. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Matalgah, M. M.

Mishra, A.K.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Pleros, N.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Poggiolini, P.

S. Benedetto, R. Gaudino, and P. Poggiolini, "Performance of coherent optical polarization shift keying modulation in the presence of phase noise," IEEE Trans. Commun. 43, 1603-1612 (1995).
[CrossRef]

S. Benedetto, and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun. 40, 708-721 (1992).
[CrossRef]

Poustie, A. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Radaydeh, R. M.

Simos, H.

Simoyama, T.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Stampoulidis, L.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Syvridis, D.

Talli, G.

G. Talli, and M. J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modeling and experiments," Opt. Commun. 218, 161-166 (2003).
[CrossRef]

Tsiokos, D.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Vyrsokinos, K.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Yang, X.

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Zhang, X. L.

P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, "Novel all-optical AND and NOR Gates based on semiconductor fiber ring laser," Acta Physica Sinica,  56, (2007) (to be published).

Zhu, G. X.

P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, "Novel all-optical AND and NOR Gates based on semiconductor fiber ring laser," Acta Physica Sinica,  56, (2007) (to be published).

Acta Physica Sinica (1)

P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, "Novel all-optical AND and NOR Gates based on semiconductor fiber ring laser," Acta Physica Sinica,  56, (2007) (to be published).

Electron. Lett. (1)

R. Calvani, R. Caponi, and F. Cisternino, "Polarization phase-shift keying: A coherent transmission technique with differential Heterodyne detection," Electron. Lett. 24, 642-643 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. C. Kothari, and DanielJ. Blumenthal, "Influence of gain saturation, gain asymmetry, and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers," IEEE J. Quantum Electron. 32, 1810-1816 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Li, and G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos. "10-Gb/s all-optical half-adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

IEEE Trans. Commun. (2)

S. Benedetto, R. Gaudino, and P. Poggiolini, "Performance of coherent optical polarization shift keying modulation in the presence of phase noise," IEEE Trans. Commun. 43, 1603-1612 (1995).
[CrossRef]

S. Benedetto, and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun. 40, 708-721 (1992).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (3)

G. Talli, and M. J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modeling and experiments," Opt. Commun. 218, 161-166 (2003).
[CrossRef]

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. L.ee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun.,  218, 345-349 (2003).
[CrossRef]

Topics in Quantum Electron. (1)

H. J. S. Dorren, X. Yang, A.K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, "All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier," IEEE J. Select.Topics in Quantum Electron. 10, 1079-1092 (2004).
[CrossRef]

Other (3)

B. Mikkelson, "Optical amplifier and their system applications," Ph.D dissertation, Denmark Univ. Technol. 163-164 (1994).

S. H. Kim, J. H. Kim, J. W. Choi, C. W. Son, S. H. Ok, Y. T. Byun, Y. M. Jhon, S. Lee, D. Ha Woo, and S. H. Kim, "All-optical half adder using single mechanism of XGM in semiconductor optical amplifiers," in Semiconductor Lasers and Applications II J. Yao, Y. J. Chen, and S. Lee, eds., Proc. SPIE 5628, 94-101 (2005).
[CrossRef]

S. Kumar, D. Gurkan, and A. E. Willner, "All-optical half adder using a PPLN waveguide and an SOA," in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WN2 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2004-WN2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The basic logic diagram of the half adder

Fig. 2.
Fig. 2.

Schematic diagram of the all-optical half adder

Fig. 3.
Fig. 3.

Intensity waveform for (a) the input signal 1, (b) the input signal 2, (c) the logic AND output, and (d) the logic XOR output.

Fig. 4.
Fig. 4.

Output power level of logic “1” of AND gate and XOR gate for different powers of the input signal 2

Fig. 5.
Fig. 5.

Output power level of logic “1” of AND gate and XOR gate for different input signal 1 powers

Fig. 6.
Fig. 6.

Output power level of logic “1” of AND gate and XOR gate as a function of injection current

Fig. 7.
Fig. 7.

Output power level of logic “1” of AND gate and XOR gate as a function of input signal 2 wavelength

Tables (2)

Tables Icon

Table 1. Truth Table of Half Adder

Tables Icon

Table 2 Parameter used in simulation

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d A s 1 , i d z = 1 2 [ Γ g s 1 , i 1 + P i P s ( 1 i α i ) α l ] A s 1 , i Γ g s 1 , i 2 ( 1 + P i P s ) ( η s 1 , s 2 A s 2 , i 2 + η s 1 , c A c , i 2 + η s 1 , sat A sat , i 2 ) A s 1 , i
Γ g s 1 , i 2 ( 1 + P i P s ) [ ( η s 2 , s 1 + η c , s 1 ) A s 2 , i A c , i A s 1 , i * + η s 2 , sat A s 2 , i 2 A sat , i * ]
d A s 2 , i d z = 1 2 [ Γ g s 2 , i 1 + P i P s ( 1 i α i ) α l ] A s 2 , i Γ g s 2 , i 2 ( 1 + P i P s ) ( η s 2 , s 1 A s 1 , i 2 + η s 2 , c A c , i 2 + η s 2 , sat A sat , i 2 ) A s 2 , i
Γ g s 2 , i 2 ( 1 + P i P s ) [ ( η s 1 , s 2 + η sat , s 2 ) A s 1 , i A sat , i A s 2 , i * + η s 1 , c A s 1 , i 2 A c , i * ]
d A c , i d z = 1 2 [ Γ g c , i 1 + P i P s ( 1 i α i ) α l ] A c , i Γ g c , i 2 ( 1 + P i P s ) ( η c , s 1 A s 1 , i 2 + η c , s 2 A s 2 , i 2 + η c , sat A sat , i 2 ) A c , i
Γ g c , i 2 ( 1 + P i P s ) [ ( η s 2 , sat + η s 1 , sat ) A s 1 , i A s 2 , i A sat , i * + η s 1 , s 2 A s 1 , i 2 A s 2 , i * ]
d A sat , i d z = 1 2 [ Γ g sat , i 1 + P i P s ( 1 i α i ) α l ] A sat , i Γ g sat , i 2 ( 1 + P i P s ) ( η sat , s 1 A s 1 , i 2 + η sat , s 2 A s 2 , i 2 + η sat , c A c , i 2 ) A sat , i
Γ g sat , i 2 ( 1 + P i P s ) [ ( η s 2 , c + η s 1 , c ) A s 1 , i A s 2 , i A c , i * + η s 2 , s 1 A s 2 , i 2 A s 1 , i * ]
g ( v , N ) = e 2 M 2 4 π 2 ε 0 m 0 2 c n g v ( 8 π 2 m c m hh h 2 ( m c + m hh ) ) 3 2 ( h v E g ) 1 2 [ f c ( v ) + f v ( v ) 1 ]
± d W j , i ± ( z , t ) d z = [ Γ g j , i ( N ) α l ] W j , i ± ( z , t ) + Γ g j , i h c 2 λ j 3
g ( v , N ) = e 2 M 2 4 π 2 ε 0 m 0 2 c n a v ( 8 π 2 m r h 2 ) 3 2 ( h v E g ) 1 2 f c ( v ) f v ( v )
d N i d t = I ewdL ( c 1 N i + c 2 N i 2 + c 3 N i 3 ) j = s 1 , s 2 , c , sat g j , i G j , i 1 ln G j , i A j , i 2 λ j hcwd
j = 1 m g j , i [ 2 g j , i g ¯ j , i ( G j , i 1 ln G j , i 1 ) + G j , i 1 ln G j , i Δ λ ( W j , i + + W j , i ) λ j hcwd ]

Metrics