Abstract

Metallic nanocluster gratings composed of a 3-dimensionally periodic distribution of silver nanoparticles are successfully formed in a dielectric. A periodic arrangement of silver nanoclusters are created by holographic interference of two continuous-wave laser beams in a glass medium with embedded ~10 nm silver nanoparticles. The diffraction efficiency is much higher for the nanocluster gratings formed by TEpolarized (parallel to grating fringes) beams than those formed by TMpolarized beams. This strong polarization dependence in the formation of nanocluster gratings reveals that strong near-field coupling between localized surface plasmons excited at the metallic nanoparticles is one of the dominant mechanisms governing the rearrangement of the silver nanoparticles. The nonlinear response of metallic nanoparticles is greatly enhanced when the incident light is polarized along the lines of the silver nanoparticles.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Heidelberg, 1995), Chap. 1.
  2. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
    [CrossRef] [PubMed]
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002).
    [CrossRef]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  6. J. Yoon, K Choi, S. H. Song, and G. Lee, "Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period," J. Opt. Soc. Korea 9, 162-168 (2005).
    [CrossRef]
  7. M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997).
    [CrossRef]
  8. N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120 - 1122 (2002).
    [CrossRef]
  9. J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
    [CrossRef]
  10. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in Media with a negative Refractive Index," Phys. Rev. Lett. 90, 1074021-1074024 (2003).
    [CrossRef]
  11. K. Kaneko, H.-B. Sun, X.-M. D. and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
    [CrossRef]
  12. S. S. Najafi, Introduction to Glass Integrated Optics (Artech House, Boston, 1992), Chap. 1.
  13. I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995).
    [CrossRef]
  14. D. L. Feldheim and C. A. J. Foss, Metal Nanoparticles (Marcel Dekker, New York, 2002), Chap. 4.
  15. C. Montero, C. Gomez-Reino and J. L. Brebner, "Planar Bragg gratings made by excimer-laser modification of ion-exchanged waveguides," Opt. Lett. 24, 1487-1489 (1999).
    [CrossRef]
  16. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999).
    [CrossRef]
  17. F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
    [CrossRef]
  18. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999).
    [CrossRef]
  19. H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
    [CrossRef]
  20. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  21. Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
    [CrossRef]

2005 (1)

2003 (4)

J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in Media with a negative Refractive Index," Phys. Rev. Lett. 90, 1074021-1074024 (2003).
[CrossRef]

K. Kaneko, H.-B. Sun, X.-M. D. and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

2002 (3)

H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120 - 1122 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002).
[CrossRef]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

1999 (3)

1998 (3)

Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1997 (1)

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997).
[CrossRef]

1996 (1)

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

1995 (1)

I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995).
[CrossRef]

Arnold, G. W.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Battaglin, G.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Berg, K.-J.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Bertoncello, R.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Brebner, J. L.

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002).
[CrossRef]

Calvelli, P.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Cattaruzza, E.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Choi, K

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Economou, E. N.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in Media with a negative Refractive Index," Phys. Rev. Lett. 90, 1074021-1074024 (2003).
[CrossRef]

Efimov, O. M.

Foteinopoulou, S.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in Media with a negative Refractive Index," Phys. Rev. Lett. 90, 1074021-1074024 (2003).
[CrossRef]

Fukui, M.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997).
[CrossRef]

Garcia, N.

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120 - 1122 (2002).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Glebov, L. B.

Glebova, L. N.

Gomez-Reino, C.

Gonella, F.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Graener, H.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Haglund, R. F.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Haraguchi, M.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997).
[CrossRef]

Ho Song, S.

J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Kaempfe, M.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Kaneko, K.

K. Kaneko, H.-B. Sun, X.-M. D. and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002).
[CrossRef]

Kim, P.-S.

J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Lee, G.

J. Yoon, K Choi, S. H. Song, and G. Lee, "Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period," J. Opt. Soc. Korea 9, 162-168 (2005).
[CrossRef]

J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, H.

Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

Liu, Z.

Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002).
[CrossRef]

Manabe, Y.

I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995).
[CrossRef]

Mattei, G.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Mazzoldi, P.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Montero, C.

Oh, C.-H.

J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Polloni, R.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

Ponizovskaya, E. V.

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120 - 1122 (2002).
[CrossRef]

Quinten, M.

Rainer, T.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Richardson, K. C.

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Seifert, G.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Shintani, Y.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997).
[CrossRef]

Smirnov, V. I.

Song, S. H.

Soukoulis, C. M.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in Media with a negative Refractive Index," Phys. Rev. Lett. 90, 1074021-1074024 (2003).
[CrossRef]

Sun, H.-B.

K. Kaneko, H.-B. Sun, X.-M. D. and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
[CrossRef]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Tanahashi, I.

I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tohda, T.

I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995).
[CrossRef]

Wang, H.

Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

Wang, X.

Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Xiao, J. Q.

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120 - 1122 (2002).
[CrossRef]

Yano, M.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997).
[CrossRef]

Yoon, J.

J. Yoon, K Choi, S. H. Song, and G. Lee, "Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period," J. Opt. Soc. Korea 9, 162-168 (2005).
[CrossRef]

J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Yoshida, M.

I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996).
[CrossRef]

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

K. Kaneko, H.-B. Sun, X.-M. D. and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
[CrossRef]

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120 - 1122 (2002).
[CrossRef]

Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

J. Appl. Phys. (1)

J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

J. Mater. Res. (1)

I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995).
[CrossRef]

J. Opt. Soc. Korea (1)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in Media with a negative Refractive Index," Phys. Rev. Lett. 90, 1074021-1074024 (2003).
[CrossRef]

Surf. Sci. (1)

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997).
[CrossRef]

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Heidelberg, 1995), Chap. 1.

D. L. Feldheim and C. A. J. Foss, Metal Nanoparticles (Marcel Dekker, New York, 2002), Chap. 4.

S. S. Najafi, Introduction to Glass Integrated Optics (Artech House, Boston, 1992), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). TEM image of silver nanoclusters, after annealing in air for 30 min at 600 □. (b) XRD spectra and (c) absorption spectra of the silver nanoclusters embedded in a glass medium. The white bars represent 10 µm in length. The inset in (c) shows the comparison between the experimental absorption spectrum annealed at 600 □ and the spectrum estimated by the Mie scattering theory.

Fig. 2.
Fig. 2.

(a). Optical microscope image of silver nanocluster gratings formed by TE-polarization interference beams, and (b) the fringe intensity profile (solid curve) cut along the dashed line in (a). The dotted curve in (b) is an intensity profile of grating samples (not shown here) formed by TMpolarization interference, where the vertical scale is ten times magnified.

Fig. 3.
Fig. 3.

(a). Optical microscope image and (c) fringe intensity profile along the dashed line of the silver nanocluster gratings after irradiation focused at the central dark area with a TE-polarized (perpendicular to the dashed line) beam. (b) and (d) are those after a TM-polarized beam (parallel to the dashed line) irradiation. The white bars represent 10 µm in length.

Fig. 4.
Fig. 4.

Optical microscope image after a single focused beam exposure at the center of a uniformly distributed nanocluster sample. The white ring surrounding the central area reveals a high reflection from silver metals. The white bar represents 10 µm in length.

Metrics