Abstract

The European Space Agency’s space-based DARWIN mission aims to directly detect extrasolar Earth-like planets using nulling interferometry. However, in order to accomplish this using current optical technology, the interferometer input beams must be filtered to remove local wavefront errors. Although short lengths of single-mode fiber are ideal wavefront filters, DARWIN’s operating wavelength range of 4–20 µm presents real challenges for optical fiber technology. In addition to the fact that step-index fibers only offer acceptable coupling efficiency over about one octave of optical bandwidth, very few suitable materials are transparent within this wavelength range. Microstructured optical fibers offer two unique properties that hold great promise for this application; they can be made from a single-material and offer endlessly single-mode guidance. Here we explore the advantages of using a microstructured fiber as a broadband wavefront filter for 4–20 µm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mayor and D. Queloz, "A Jupiter-mass companion to a solar-type star," Nature 378, 355-359 (1995).
    [CrossRef]
  2. N. Woolf and J. R. Angel, "Astronomical searches for earth-like planets and signs of life," Astron. Astrophys. 36, 507-537 (1998).
    [CrossRef]
  3. R. N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780-781 (1978).
    [CrossRef]
  4. J. R. P. Angel, A. Y. S. Cheng and N. J. Woolf, "A space telescope for infrared spectroscopy of Earth-like planets," Nature 322, 341-434 (1978).
    [CrossRef]
  5. C. V. M. Fridlund, "DARWIN - The Infrared Space Interferometry Mission," ESA bulletin 103,20-25 (2000), http://www.esa.int/esapub/bulletin/bullet103/fridlund103.pdf.
  6. http://planetquest.jpl.nasa.gov/Navigator/library/tpfI414.pdf
  7. M. Ollivier and J.-M. Mariotti, "Improvement in the rejection rate of a nulling interferometer by spatial filtering," Appl. Opt. 36, 5340 - 5346 (1997).
    [CrossRef] [PubMed]
  8. B. Mennesson, M. Ollivier and C. Ruilier, "Use of single-mode waveguides to correct the optical defects of a nulling interferometer," J. Opt. Soc. Am. A 19, 596 - 602 (2002).
    [CrossRef]
  9. DARWIN Payload Definition Document SCI-A/2005/301/Darwin/DMS/LdA
  10. O. Wallner, W. R. Leeb and R. Flatscher, "Design of spatial and modal filters for nulling interferometry," Proc. SPIE 838, 668-679 (2003).
    [CrossRef]
  11. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  12. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  13. J. C. Baggett, T. M. Monro, and D. J. Richardson, "Mode area limits in practical single-mode fibers," Conference of Lasers and Electro-Optics 2005 (CLEO’05), Baltimore, USA, 22-27th May 2005, paper CMD6.
  14. J. Corbett and J. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens," Opt. Express 13, 6527-6540 (2005).
    [CrossRef] [PubMed]
  15. J. C. Flanagan, D. J. Richardson, M. Foster and I. Bakalski, "A microstructured wavefront filter for the DARWIN nulling interferometer," Proc. ‘6th International Conf. on Space Optics,’ ESTEC, Noordwijk, The Netherlands, 27-30 June 2006 (ESA SP-621, June 2006).
  16. O. Wallner, W. R. Leeb, and P. J. Winzer, "Minimum length of a single-mode spatial filter," J. Opt. Soc. Am. A. 192445-2448 (2002).
    [CrossRef]
  17. O. Wallner, P. J. Winzer, and W. R. Leeb, "Alignment tolerances for plane wave to single-mode fiber coupling and their mitigation by use of pigtailed collimators," Appl. Opt. 41637 - 643 (2001).
    [CrossRef]
  18. E. Eran Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, "Silver Halide Photonic Crystal Fibers for the Middle Infrared,"Appl. Opt. 43, 2236 - 2241 (2004).
    [CrossRef] [PubMed]
  19. E. Rave, S. Sade, A. Millo, and A. Katzir, "Few modes in infrared photonic crystal fibers," J. Appl. Phys. 97, 033103 (2005).
    [CrossRef]
  20. L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, "Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications," in Advances in Fiber Optics, E. M. Dianov, eds., Proc. SPIE 4083, 238-253 (2000).
    [CrossRef]
  21. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, "Holey fibers with random cladding distributions," Opt. Lett. 25206-208 (2000).
    [CrossRef]
  22. G. Renversez, F. Bordas, and B. T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005).
    [CrossRef] [PubMed]
  23. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
    [PubMed]
  24. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 261660 - 1662 (2001).
    [CrossRef]
  25. http://www.comsol.com/products/electro/
  26. http://www.crystran.co.uk/products.asp
  27. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed (Academic Press 2001) pp. 44.
  28. T. M. Monro, H. Ebendorff-Heidepriem, X. Feng, "Non-silica microstructured optical fibers," Ceram. Trans. 163, 29-48 (2005).
  29. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]
  30. H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, "Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation," Proc. IEEE/LEOS Benelux Chapter, 2004, Ghent.
  31. A. Argyros, and I. Bassett, "Counting Modes in Optical Fibres with Leaky Modes," in Symposium on Optical Fiber Measurements SOFM 2002, National Institute of Standards and Technology, Colorado, USA September 24-26 pp. 135-138 (2002).
  32. J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004).
    [CrossRef] [PubMed]
  33. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001).
    [CrossRef] [PubMed]
  34. M. Yan and P. Shum, "Guidance varieties in photonic crystal fibers," J. Opt. Soc. Am. B 23, pp. 1684 - 1691 (2006).
    [CrossRef]

2006 (1)

2005 (4)

2004 (3)

2003 (3)

O. Wallner, W. R. Leeb and R. Flatscher, "Design of spatial and modal filters for nulling interferometry," Proc. SPIE 838, 668-679 (2003).
[CrossRef]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

2002 (3)

2001 (3)

2000 (2)

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, "Holey fibers with random cladding distributions," Opt. Lett. 25206-208 (2000).
[CrossRef]

C. V. M. Fridlund, "DARWIN - The Infrared Space Interferometry Mission," ESA bulletin 103,20-25 (2000), http://www.esa.int/esapub/bulletin/bullet103/fridlund103.pdf.

1998 (1)

N. Woolf and J. R. Angel, "Astronomical searches for earth-like planets and signs of life," Astron. Astrophys. 36, 507-537 (1998).
[CrossRef]

1997 (1)

1995 (1)

M. Mayor and D. Queloz, "A Jupiter-mass companion to a solar-type star," Nature 378, 355-359 (1995).
[CrossRef]

1978 (2)

R. N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780-781 (1978).
[CrossRef]

J. R. P. Angel, A. Y. S. Cheng and N. J. Woolf, "A space telescope for infrared spectroscopy of Earth-like planets," Nature 322, 341-434 (1978).
[CrossRef]

Allington-Smith, J.

Angel, J. R.

N. Woolf and J. R. Angel, "Astronomical searches for earth-like planets and signs of life," Astron. Astrophys. 36, 507-537 (1998).
[CrossRef]

Angel, J. R. P.

J. R. P. Angel, A. Y. S. Cheng and N. J. Woolf, "A space telescope for infrared spectroscopy of Earth-like planets," Nature 322, 341-434 (1978).
[CrossRef]

Bennett, P. J.

Bird, D. M.

Bordas, F.

Botten, L. C.

Bracewell, R. N.

R. N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780-781 (1978).
[CrossRef]

Broderick, N. G. R.

Cheng, A. Y. S.

J. R. P. Angel, A. Y. S. Cheng and N. J. Woolf, "A space telescope for infrared spectroscopy of Earth-like planets," Nature 322, 341-434 (1978).
[CrossRef]

Corbett, J.

de Sterke, C. M.

Ebendorff-Heidepriem, H.

T. M. Monro, H. Ebendorff-Heidepriem, X. Feng, "Non-silica microstructured optical fibers," Ceram. Trans. 163, 29-48 (2005).

Ephrat, P.

Eran Rave, E.

Feng, X.

T. M. Monro, H. Ebendorff-Heidepriem, X. Feng, "Non-silica microstructured optical fibers," Ceram. Trans. 163, 29-48 (2005).

Flatscher, R.

O. Wallner, W. R. Leeb and R. Flatscher, "Design of spatial and modal filters for nulling interferometry," Proc. SPIE 838, 668-679 (2003).
[CrossRef]

Folkenberg, J.

Fridlund, C. V. M.

C. V. M. Fridlund, "DARWIN - The Infrared Space Interferometry Mission," ESA bulletin 103,20-25 (2000), http://www.esa.int/esapub/bulletin/bullet103/fridlund103.pdf.

Fujita, M.

George, A. K.

Goldberg, M.

Hedley, T. D.

Jakobsen, C.

Katzir, A.

Kawanishi, S.

Kedmi, E.

Knight, J. C.

Kubota, H.

Kuhlmey, B. T.

Leeb, W. R.

O. Wallner, W. R. Leeb and R. Flatscher, "Design of spatial and modal filters for nulling interferometry," Proc. SPIE 838, 668-679 (2003).
[CrossRef]

O. Wallner, W. R. Leeb, and P. J. Winzer, "Minimum length of a single-mode spatial filter," J. Opt. Soc. Am. A. 192445-2448 (2002).
[CrossRef]

O. Wallner, P. J. Winzer, and W. R. Leeb, "Alignment tolerances for plane wave to single-mode fiber coupling and their mitigation by use of pigtailed collimators," Appl. Opt. 41637 - 643 (2001).
[CrossRef]

Luan, F.

Mariotti, J.-M.

Mayor, M.

M. Mayor and D. Queloz, "A Jupiter-mass companion to a solar-type star," Nature 378, 355-359 (1995).
[CrossRef]

McPhedran, R. C.

Mennesson, B.

Millo, A.

E. Rave, S. Sade, A. Millo, and A. Katzir, "Few modes in infrared photonic crystal fibers," J. Appl. Phys. 97, 033103 (2005).
[CrossRef]

Monro, T. M.

T. M. Monro, H. Ebendorff-Heidepriem, X. Feng, "Non-silica microstructured optical fibers," Ceram. Trans. 163, 29-48 (2005).

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, "Holey fibers with random cladding distributions," Opt. Lett. 25206-208 (2000).
[CrossRef]

Mortensen, N.

Mortensen, N. A.

Nielsen, M.

Ollivier, M.

Pearce, G. J.

Queloz, D.

M. Mayor and D. Queloz, "A Jupiter-mass companion to a solar-type star," Nature 378, 355-359 (1995).
[CrossRef]

Rave, E.

E. Rave, S. Sade, A. Millo, and A. Katzir, "Few modes in infrared photonic crystal fibers," J. Appl. Phys. 97, 033103 (2005).
[CrossRef]

Renversez, G.

Richardson, D. J.

Ruilier, C.

Russell, P. S. J.

Russell, P. St. J.

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sade, S.

E. Rave, S. Sade, A. Millo, and A. Katzir, "Few modes in infrared photonic crystal fibers," J. Appl. Phys. 97, 033103 (2005).
[CrossRef]

Shum, P.

Simonsen, H.

Steel, M. J.

Suzuki, K.

Tanaka, M.

Wallner, O.

O. Wallner, W. R. Leeb and R. Flatscher, "Design of spatial and modal filters for nulling interferometry," Proc. SPIE 838, 668-679 (2003).
[CrossRef]

O. Wallner, W. R. Leeb, and P. J. Winzer, "Minimum length of a single-mode spatial filter," J. Opt. Soc. Am. A. 192445-2448 (2002).
[CrossRef]

O. Wallner, P. J. Winzer, and W. R. Leeb, "Alignment tolerances for plane wave to single-mode fiber coupling and their mitigation by use of pigtailed collimators," Appl. Opt. 41637 - 643 (2001).
[CrossRef]

White, T. P.

Winzer, P. J.

Woolf, N.

N. Woolf and J. R. Angel, "Astronomical searches for earth-like planets and signs of life," Astron. Astrophys. 36, 507-537 (1998).
[CrossRef]

Woolf, N. J.

J. R. P. Angel, A. Y. S. Cheng and N. J. Woolf, "A space telescope for infrared spectroscopy of Earth-like planets," Nature 322, 341-434 (1978).
[CrossRef]

Yan, M.

Appl. Opt. (3)

Astron. Astrophys. (1)

N. Woolf and J. R. Angel, "Astronomical searches for earth-like planets and signs of life," Astron. Astrophys. 36, 507-537 (1998).
[CrossRef]

Ceram. Trans. (1)

T. M. Monro, H. Ebendorff-Heidepriem, X. Feng, "Non-silica microstructured optical fibers," Ceram. Trans. 163, 29-48 (2005).

ESA bulletin (1)

C. V. M. Fridlund, "DARWIN - The Infrared Space Interferometry Mission," ESA bulletin 103,20-25 (2000), http://www.esa.int/esapub/bulletin/bullet103/fridlund103.pdf.

J. Appl. Phys. (1)

E. Rave, S. Sade, A. Millo, and A. Katzir, "Few modes in infrared photonic crystal fibers," J. Appl. Phys. 97, 033103 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

O. Wallner, W. R. Leeb, and P. J. Winzer, "Minimum length of a single-mode spatial filter," J. Opt. Soc. Am. A. 192445-2448 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (4)

M. Mayor and D. Queloz, "A Jupiter-mass companion to a solar-type star," Nature 378, 355-359 (1995).
[CrossRef]

R. N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780-781 (1978).
[CrossRef]

J. R. P. Angel, A. Y. S. Cheng and N. J. Woolf, "A space telescope for infrared spectroscopy of Earth-like planets," Nature 322, 341-434 (1978).
[CrossRef]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Proc. SPIE (1)

O. Wallner, W. R. Leeb and R. Flatscher, "Design of spatial and modal filters for nulling interferometry," Proc. SPIE 838, 668-679 (2003).
[CrossRef]

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (10)

J. C. Baggett, T. M. Monro, and D. J. Richardson, "Mode area limits in practical single-mode fibers," Conference of Lasers and Electro-Optics 2005 (CLEO’05), Baltimore, USA, 22-27th May 2005, paper CMD6.

J. C. Flanagan, D. J. Richardson, M. Foster and I. Bakalski, "A microstructured wavefront filter for the DARWIN nulling interferometer," Proc. ‘6th International Conf. on Space Optics,’ ESTEC, Noordwijk, The Netherlands, 27-30 June 2006 (ESA SP-621, June 2006).

http://planetquest.jpl.nasa.gov/Navigator/library/tpfI414.pdf

DARWIN Payload Definition Document SCI-A/2005/301/Darwin/DMS/LdA

H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, "Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation," Proc. IEEE/LEOS Benelux Chapter, 2004, Ghent.

A. Argyros, and I. Bassett, "Counting Modes in Optical Fibres with Leaky Modes," in Symposium on Optical Fiber Measurements SOFM 2002, National Institute of Standards and Technology, Colorado, USA September 24-26 pp. 135-138 (2002).

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, "Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications," in Advances in Fiber Optics, E. M. Dianov, eds., Proc. SPIE 4083, 238-253 (2000).
[CrossRef]

http://www.comsol.com/products/electro/

http://www.crystran.co.uk/products.asp

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed (Academic Press 2001) pp. 44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Fluxes of the Sun and Earth as seen from a distance of 4 pc (Nλ is the photon flux), adapted from [3]. The DARWIN spectral band is indicated by the shaded region. (b) Schematic of a Bracewell nulling interferometer.

Fig. 2.
Fig. 2.

Simple coupling arrangement and principles of a modal wavefront filter adapted from Fig. 2. in [10].

Fig. 3.
Fig. 3.

Defining parameters of index-guiding microstructured fibers.

Fig. 4.
Fig. 4.

Schematic illustrations of the optical properties of MOFs (blue dashed line) and SIFs (red solid line) as a function of wavelength; (a) and (b) effective index, (c) V-parameter and (d) effective mode area. ncore and nclad are the core and cladding refractive indices of a SIF.

Fig. 5.
Fig. 5.

Calculated modal intensity profiles for Λ=20 µm, d/Λ=0.4, N=3 and nmat=2.167. (a) Fundamental mode, CFM=0.002 dB/m (b) and (c) First two higher-order modes, CLM=150 dB/m. Open circles indicate hole positions. (Large open hexagon defines a region of higher density mesh used in the calculations).

Fig. 6.
Fig. 6.

The parameter Q plotted as a function of Λ and d/Λ for N=7 and nmat=2.167.

Fig. 7.
Fig. 7.

(a)–(i) Coupling loss as a function of wavelength for different MOFs. Values of Λ, d/Λ, Q and λopt are indicated on each plot. (j) Coupling loss as a function of wavelength for a SIF with λc=4 µm, extracted from results in Fig. 3 in [10]. Vopt∝1/λopt. nmat=2.167.

Fig. 8.
Fig. 8.

(a)–(c) CFM×l min at λ=20 µm as a function of N for Λ=10, 15 and 20 µm. l min (for which A=106 at λ=4 µm) is shown in (d)–(f). In (a) and (d) d/Λ=0.2, in (b) and (e) d/Λ=0.3, and in (c) and (f) d/Λ=0.4. λopt=8 µm and nmat=2.167.

Fig.9.
Fig.9.

Λ=10 µm, d/Λ=0.2, N=7 and nmat=2.167. (a) Coupling loss as a function of wavelength (b) Confinement loss as a function of wavelength for l=l min (c) sum of coupling and confinement losses for l=l min as a function of wavelength. Values of λopt and l min are indicated on the Fig.

Fig.10.
Fig.10.

Λ=10 µm, d/Λ=0.4, N=7 and nmat=2.167. (a) Coupling loss as a function of wavelength (b) Confinement loss as a function of wavelength for l=l min (c) sum of coupling and confinement losses for l=l min as a function of wavelength. Values of λopt and l min are indicated on the Fig.

Fig.11.
Fig.11.

(a) Coupling loss + confinement loss for l=l min as a function of wavelength for a MOF with Λ=10 µm, d/Λ=0.4, N=7 and nmat=2.167. (b), (c) and (d) Coupling loss as a function of wavelength for SIFs with λc=4.0, 6.6 and 8.4 µm respectively (adapted from Fig. 3 in [10]). Vopt∝1/λopt. Shaded areas indicate regions of multimode guidance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = η 10 σ l ( 1 η ) where σ = l α LM 10 ,
η ( λ ) = 2 χ 2 ( 1 e χ 2 ) 2 , where χ = α π ω β ( λ ) f λ
l min = 10 log 10 ( A [ 1 η ] η ) Δ C , where Δ C = C LM C FM
Q = 1 P λ 1 λ 2 A eff λ 2 d λ , = where P = ( A eff λ 2 ) λ = λ 2 ,

Metrics